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TABLE 3
Summary of parametrization.
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χ=0.96 Share of labor in labor-energy composite
ϵ=1.6 Elasticity of substitution between energy sources (Popp, 2004)
std(ϵ)=0.56 Standard deviation of elasticity of substitution between energy sources (Papageorgiou et al., 2017)
κ=0.89 Share of fossil fuels in energy composite
f(·) Extraction costs (Rogner, 1997; Bauer et al., 2017)
ζf0 (·),ζc0(·) Initial energy productivities based on current energy use
υf =1.16 Elasticity of fossil fuel productivity growth to global real GDP per capita growth
υc=1.22 Elasticity of clean energy productivity growth to global real GDP per capita growth

2. Damage functions: Λat (r)=Λa(∆Tt(r),Tt(r)), Λbt(r)=Λb(∆Tt(r),Tt(r)), nt(r)=η(yt(r),Lt(r))

Λa(·),Λb(·) Relation between temperature and fundamental productivities and amenities
η(·) Relation between natality rates, real GDP, and temperature

3. Carbon cycle and climate
g(·) Relation between global temperature and local temperature (Statistical down-scaling)
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β=0.965 Discount factor
σ=1 Elasticity of utility to real income
ρ=0.75 Elasticity of substitution of 4 (Bernard et al., 2003)
λ=0.32 Elasticity of amenities to population density (Desmet et al., 2018)
Ω=0.5 Inverse of elasticity of migration flows to income (Monte et al., 2018)
ψ=0.05 Relation between utility and HDI (Kummu et al., 2018)

5. Technology: qωt (r)=ϕ
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α=0.06 Static elasticity of productivity to density (Carlino et al., 2007)
θ=6.5 Trade elasticity (Eaton and Kortum, 2002; Simonovska and Waugh, 2014)
µ=0.8 Share of non-land in production (Greenwood et al., 1997; Desmet and Rappaport, 2017)
γ1=0.319 Relation between population distribution and growth (Desmet et al., 2018)

6. Productivity evolution: āt(r)=(1+Λat (r))
(
ϕt−1(r)θγ1
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γ2=0.993 Relation between population distribution and growth (Desmet et al., 2018)
ξ=125 Elasticity of bid rents to investments in technology (Desmet and Rossi-Hansberg, 2015)
ν=0.15 Level of innovation costs that yields an initial growth rate of real GDP of 1.75%

7. Trade costs
ς(·,·) Trade costs computed as in (Allen and Arkolakis, 2014) using the Fast Marching Algorithm

8. Migration costs
m2(·) Migration costs to match local population change between 2000 and 2005

A. PARAMETERS AND DATA

Table 3 summarizes the parameters we use in the baseline scenario. The rest of this
section discusses the sources and construction of our data.

Population and GDP at 1◦×1◦. Data on population and GDP, in Power Purchasing
Parities, for 1◦×1◦ cells across the entire world come from the G-Econ 4.0 research
project (Nordhaus, 2006; Nordhaus and Chen, 2016). For the estimation of fundamental
amenities and productivities, we use data for the years 1990, 1995, 2000, and 2005. We
consider the same 17,048 cells that in 2000 have positive population, GDP and land. If
some of these cells display missing values for 1990, 1995 or 2005, we linearly extrapolate
the missing data, and, in each period, we cap GDP per capita at the percentile 97.13.

Human Development Index at 1◦×1◦. Kummu et al. (2018) provides data on the
Human Development Index at a yearly frequency, from 1990 to 2015, at a sub-national
level, considering around 700 geographic units. This data is presented at a resolution
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of 5 arc-min, so we aggregate it at a resolution of 60 minutes by considering the mode
across cells.

Geographical attributes at 1◦×1◦. Elevation data, measured as meters above the sea
level at a resolution of 1◦×1◦, is taken from (SIO, 1977) (http://research.jisao.
washington.edu/data_sets/elevation/). To construct the standard deviation and
the mean absolute error, also known as roughness, within each 1◦×1◦ cell, we use
the aforementioned dataset at a resolution of 0.25◦×0.25◦ and compute these statistics
over the cells with positive land. Distance to the coast is taken from the NASA Ocean
Biology Processing Group (NASA, 2009) (https://oceancolor.gsfc.nasa.gov/docs/
distfromcoast/). This data is provided at a resolution of 0.1◦×0.1◦, so we compute
the average distance within each 1◦×1◦ cell. Distance to non-frozen oceans at 1◦×1◦

is taken from the G-Econ database. Distance to nearest water body either inland or
sealand (ice-covered land areas are not considered as water bodies) at 1◦×1◦ is taken
from Carrea et al. (2015). The following data are obtained from the NASA Earth
Observations (NASA, 2023) (https://neo.sci.gsfc.nasa.gov) at 1◦×1◦: vegetation
density is taken as the average over the period 1951-1980;1 share of ice-covered land
is taken over April of 2010; albedo, which is the ratio of light that a surface reflects
compared to the total sunlight that falls, is taken over April of 2010;2 land cover
classification considers the year 2010.3

Land density at 1◦×1◦. Data on land comes from the Global Land One-km Base
Elevation (Hastings et al., 1999) Digital Elevation Model, a raster elevation data set from
the National Oceanic and Atmospheric Administration covering all 30′′×30′′ (arcsecond)
cells located on land. Using this information, we compute for each 1◦×1◦ cell on the globe
the share of the 30′′×30′′ cells that are on land. Since the size of a 1◦×1◦ cell is larger
in the Equator than in the poles, we adjust the land density by the size of each cell.
Finally, we normalize this measure, so that the cell with the largest amount of land has
a land density of one.

Temperature at 1◦×1◦. Gridded temperature data comes from the Berkeley Earth
Surface Temperature (Rohde and Hausfather, 2020) (http://berkeleyearth.org/
data-new/). This dataset provides information as far as 1750, as frequent as daily
maximum, minimum and average temperature and as fine as 0.25◦×0.25◦. We employ
the database that provides annual temperature at a resolution of 1◦×1◦. For the cells
with missing temperature, we take the simple average temperature across the eight
surrounding cells, that is, we create a block of cells of size 3×3 centered at the cell
with missing data. If there are still cells with missing temperature (occurring for small
islands), we create a block of cells of size 5×5 centered at the cell with missing data and
take the simple average temperature. We continue with this procedure until the cell is
filled with temperature data.

Historical CO2 emissions and clean energy at country-level. Crippa et al.
(2019) (https://edgar.jrc.ec.europa.eu/overview.php?v=booklet2020) provides

1. The vegetation index ranges from -0.1 to 0.9 and have no unit. Rather, they are index values
in which higher values (0.4 to 0.9) show lands covered by green, leafy vegetation and lower values (0 to
0.4) show lands where there is little or no vegetation.

2. Surfaces that reflect a large share of the light falling on them are bright, and have high albedo,
like snow. Surfaces that do not reflect much light are dark, and have low albedo, like forests.

3. This dataset partitions land based on characteristics of the surface that satellites can detect,
such as water, soil, and vegetation types. There are 17 categories of land cover: 9 classes of natural
vegetation, 3 classes of developed lands, 2 classes of mosaic lands, and 3 classes of non-vegetated lands
(snow/ice, bare soil/rocks, water).

http://research.jisao.washington.edu/data_sets/elevation/
http://research.jisao.washington.edu/data_sets/elevation/
https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/
https://oceancolor.gsfc.nasa.gov/docs/distfromcoast/
https://neo.sci.gsfc.nasa.gov
http://berkeleyearth.org/data-new/
http://berkeleyearth.org/data-new/
https://edgar.jrc.ec.europa.eu/overview.php?v=booklet2020
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CO2 emissions for all countries considered in this analysis, except for Greenland. We
supplement this observation with data from the World Bank. Since Crippa et al. (2019)
considers international marine and international aviation, we split those emissions across
countries according to the distribution provided in IEA (2020).4 As for the use of clean
energy (expressed in tons of oil equivalent), we use information from BP (2019) and
define it as the sum of nuclear, hydroelectricity and renewables (wind, solar, among
others). Since this database provides information for some aggregate regions, like Other
South America and Other Middle East, we partition the energy use of those aggregate
regions across countries according to the pattern for CO2 emissions presented in Crippa
et al. (2019). To make comparable CO2 emissions and clean energy, we take the ratio of
tons of CO2 per ton of oil equivalent to be 2.8466.

CO2 emissions and clean energy at 1◦×1◦. The Emission Database for Global
Atmospheric Research (EDGAR, Crippa et al., 2019) version 4.0 (https://jeodpp.jrc.
ec.europa.eu/ftp/jrc-opendata/EDGAR/datasets/v40/) contains global emission
inventories for greenhouse gases and air pollutants. These emissions are calculated as
totals by country from 1970 to 2008, and distributed at a resolution of 0.1◦×0.1◦

using proxy data. We aggregate this data at 1◦×1◦ by considering the sum across cells.
We employ the CO2 distribution from residential emissions.5 In order to define carbon
dioxide emissions at the cell-level, we disaggregate the country-level emissions according
to the spatial pattern displayed in the EDGAR database. As no gridded data for clean
energy exists, we split the country-level clean energy use using the spatial pattern of the
EDGAR database.6

Historical net natality at country-level. Crude birth rates and crude death rates at
the country-level since 1950 at a yearly frequency are taken from UN (2019) (https:
//population.un.org/wpp/Download/Standard/Population/).

Projections of non-fuel combustion CO2 emissions and non-CO2 forcing. Forecasts
up to 2500 for CO2 flow and forcing for RCP 8.5, 6.0, 4.5 and 2.6 are taken from
the RCP Database version 2.0 (Riahi et al., 2007; Fujino et al., 2006; Yasuaki et al.,
2008) (https://tntcat.iiasa.ac.at/RcpDb/dsd?Action=htmlpage&page=welcome).
Carbon dioxide from deforestation is considered as OtherCO2 and we consider that
1 GtC equals 44/12 GtCO2. Non-CO2 forcing is considered as Total anthropogenic and
natural radiative forcing minus CO2 forcing.

Projections of global population. Global population levels at a quinquenial frequency
for the medium scenario, as well as 80% and 95% confidence intervals are taken from
UN (2019) (https://population.un.org/wpp/Download/Standard/Population/). In
order to make consistent total population from United Nations and G-Econ in the year
2000, from the former dataset we subtract the total population of the initial period and
add the total population of the year 2000 displayed in the G-Econ database.7

4. Since IEA (2020) provides information for aggregate regions that comprise several countries,
like Former Soviet Union or Other Africa, we partition the emissions of those aggregate regions across
countries according to the pattern displayed in Crippa et al. (2019) for total emissions.

5. We prefer this specification over total emissions or emissions from production, because the
former considers emissions that occur over cells with no land and the latter displays high level of CO2

in cells scarcely populated and with low income levels (due to the presence of plants producing steel or
cement, for instance), and such pattern might not represent the long-run trend of CO2 emissions.

6. Figure 95 in Supplementary Materials Section O.1 displays the spatial distribution of CO2

emissions and clean energy in 2000.
7. This adjustment is performed since the G-Econ database does not display information for some

regions of the world, like Libya and some parts of Africa and Asia.

https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/EDGAR/datasets/v40/
https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/EDGAR/datasets/v40/
https://population.un.org/wpp/Download/Standard/Population/
https://population.un.org/wpp/Download/Standard/Population/
https://tntcat.iiasa.ac.at/RcpDb/dsd?Action=htmlpage&page=welcome
https://population.un.org/wpp/Download/Standard/Population/
https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf#figure.caption.73
https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf
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Cost of extracting fossil fuels. Bauer et al. (2017) estimates the cost of extracting
fossil fuels and present estimates for different Shared Socioeconomics Pathways (SSP),
which consider alternative assumption regarding the evolution of the world economy.
We choose the scenario SSP5 (development based on fossil fuels), which is the one that
closest resembles the RCP 8.5. Then, we aggregate the costs of hard coal and lignite into
a single fossil fuel in terms of tCO2 per usd, considering the conversion factors of 0.0946
and 0.1012 GtCO2 per EJ, respectively. Finally, we rank costs from the least to the most
expensive.

Share of agriculture in value added. Conte et al. (2021) estimates the distribution of
agricultural output across grid cells by employing data on total crop production from
IIASA and FAO (2012).

B. DAMAGE FUNCTIONS ON AMENITIES AND PRODUCTIVITIES

In this section, we detail how we estimate our main empirical specification for the damage
function on amenities and productivities and extend the damage functions to include
temperature variability and sectoral heterogeneity.

B.1. Estimation of Damage Functions

In order to estimate the effect of temperature on amenities and productivities, we
employ equation (3.21) as our main empirical specification. The variable Tt(r) denotes
the average temperature over the last decade for January in the Northern Hemisphere
and July in the Southern Hemisphere, and 1{Tt(r)∈Tj} is an indicator function for
temperature Tt(r) being in the interval Tj . We partition the distribution of temperature
into J=20 bins, each comprising 5% of the observed temperature values.

The variable Z(r) is a vector of cell-level geographic attributes. Namely, mean,
standard deviation and average deviation of elevation, distance to the coast, to a water
body and to non-frozen oceans. Each of these six covariates, Zi(r), is transformed by
means of a Chebyshev polynomial, Z

j
i (r), j∈{1,··· ,5}. Accordingly, the vector Z(r)

comprises the 30 elements of Zji (r),

Zji (r)=cos

(
j ·arccos

(
Z̃i(r)

maxs∈S |Z̃i(s)|

))
, Z̃i(r)=Zi(r)−

1

2

(
min
s∈S

Zi(s)+max
s∈S

Zi(s)

)
.

Additionally, we consider an indicator function for 16 different types of land.8 With
respect to the time-invariant fixed effects, ι(g), we partition the 180◦×360◦ gridded map
into blocks of size 2◦×2◦. As for the time-varying fixed effects at the sub-national level,
ιt(sx), we take as basis the sub-national levels, as delimited in Kummu et al. (2018), and
aggregate the sub-national units in Europe at the (i) country-level, as defined in Desmet
et al. (2018), and (ii) at the region level, considering North, South, West and East.9,10

8. Zi(r) denotes the variable in raw units (for instance, in meters when considering elevation) and
Zji (r) the Chebyshev transformation for the j-th polynomial so that it lies between minus one and one.

9. We aggregate the sub-national units in Europe, because some of them have a size of one cell,
precluding a proper identification.

10. Figure 82 in Supplementary Materials Section M.1 displays the spatial demarcations of the
sub-national units.

https://doi.org/10.1093/restud/rdad042#equation.3.21
https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf#figure.caption.53
https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf
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We estimate equation (3.21), modeling the error term as in Conley (1999). That is,
we consider that errors are spatially correlated, so that correlation linearly declines from
one to zero as distance increases. When distance is greater than or equal to 550 km (5
cells) correlation is zero, as in Schlenker and Roberts (2009). We implement this error
structure through the Stata package acreg, developed by Colella et al. (2019).

To smooth the behavior of the point estimates across temperature bins, δ̂xj , we fit
the logistic curve δx(T ), given by equation (B.2), across the point estimates of each bin,
weighting them by the inverse of their standard errors, se(δ̂xj ), to provide a greater
weight to the more accurate estimates. In other words, we estimate the coefficients
(δxmin,δ

x
max,δ

x
center) that solve11

min
∑J
j=1

1
se(δ̂j)

(
δ̂j−δx(Tj)

)2
(B.1)

st δx(T )=δxmin+
δxmax−δxmin

1+e0.1(T−δxcenter)
, (B.2)

where Tj is the (2j−1)/(2J)-th percentile of the temperature observations, j∈{1,··· ,J=
20}. To estimate the upper and lower α% confidence interval of the logistic function, we
solve (B.1), but replace the point estimates of each bin j by their upper and lower α%
confidence intervals, respectively.

B.2. Temperature Variability

The damage functions estimated in Section 3.2 capture the impact of changes in
the average winter (January-July) temperatures on the fundamentals of the economy.
However, higher concentrations of greenhouse gases might not only affect the first
moment of the temperature distribution, but also second moments. Here, we extend
the damage functions to incorporate different measures of temperature variability.

First, we collect gridded data on daily temperatures at a level of resolution of
1◦×1◦ from the Berkeley Earth Surface Temperature. Then, we construct two measures
of temperature variability at the cell-level: the standard deviation and the extreme
temperature index. The standard deviation, STDt(r), measures the dispersion in daily
temperature in period t and region r. The extreme temperature index, ETIct (r), is defined
as the number of days per year in period t and region r with daily temperatures c
degrees Celsius greater or lower than the local average, T̄t(r), weighted by the size of the
deviation. Namely,

ETIct (r)=
∑
d∈t

∣∣Tdt(r)−T̄t(r)
∣∣

meand,r
∣∣Tdt(r)−T̄t(r)

∣∣ ·1{∣∣Tdt(r)−T̄t(r)
∣∣>c

}
,

where Tdt(r) denotes the daily temperature on day d of period t. A one unit increase in
ETIct (r) represents one additional day per year with average extreme temperature.

Figure 17 shows the spatial distribution of the two measures of temperature
variability. For the extreme temperature index we use a threshold of 4◦C, but the spatial
pattern is preserved for other thresholds. Both variables show a similar spatial pattern:

11. To achieve convergence of the non linear estimation, we exogenously set to 0.1 the slope
coefficient of the logistic function.

https://doi.org/10.1093/restud/rdad042#equation.3.21
https://doi.org/10.1093/restud/rdad042#subsection.3.2
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low dispersion in regions close to the Equator and higher dispersion in northern, or
southern, latitudes. A comparison with Figure 4 reveals a strong negative correlation
with January-July temperature.

Figure 17
Extreme temperature index for the threshold 4◦C and standard deviation of temperature.

We now extend our empirical specification of the damage functions using these
measures of temperature dispersion. Namely, we estimate

log(xt(r))=

J∑
j=1

δxj ·Tt(r) ·1{Tt(r)∈Tj}+
I∑
i=1

µxi ·Mt(r) ·1{Tt(r)∈Ti}

+δz ·Z(r) ·1{xt(r)= āt(r)/ϕt(r)}+ι(g)+ιt(sx)+εt(r), (B.3)

where, as before, xt(r)∈{b̄t(r),āt(r)/ϕt(r)} are the fundamental amenities and the
ratio of fundamental productivities to innovations at cell r in period t. The variable
Tt(r) denotes the January-July level of temperature and Mt(r)∈{ETIct (r),STDt(r)}
represents the temperature variability. Given the additive separable relation between
these variables, the coefficient µxi represents the semi-elasticity of xt(r) with respect to
temperature variability.

We partition temperatures in J=20 bins, as in the baseline, and I=5 bins, to
estimate the effect of temperature variability. We consider a small value of I to
avoid bins with no variation in temperature dispersion, something that can happen
in regions close to the Equator. Relative to our baseline specification for productivities
that controls for geographic attributes, Z(r), here we additionally control for fixed-
effects at the 2×2 cell-level, ι(g). We include this covariate to control for any local
characteristic that could affect the effect of variability on productivity. For amenities,
we use only ι(g), as in the baseline. Supplementary Materials Section M.1 presents
the estimates of µb and µa. In very cold regions, increases in temperature variability
raise both amenities and productivities, because warmer days tend to have a larger
impact than colder days. In bins with warmer temperatures, the beneficial effects of
rising temperature variability decline. These results are robust to different measures of
temperature variability. Of course, they represent only the partial effect of temperature
variability on the fundamentals of the economy, after controlling for local January-July
temperature, which explains why their level is always positive.

https://doi.org/10.1093/restud/rdad042#figure.caption.4
https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf
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The extent to which temperature variability affects our baseline estimation of
damage functions depends on the correlation between January-July temperatures and
temperature variability after controlling for natural attributes. Namely, the R2 of the
regression Mt(r)=κ0+κ ·Tt(r)+κz ·Z(r)+εt(r). Table 4 shows the effect of a 1◦C
increase in January-July temperature on the variability measures, together with the
R2 of the regression. These two variables account for more than 92% of the variation
for all our variability measures. Even more if we were to include block fixed-effects as
well. This implies that the unexplained part of the variability measures cannot affect our
damage functions significantly.

TABLE 4
Relationship between temperature variability and January-July temperatures.

ETI2 ETI4 ETI6 ETI8 ETI10 STD

κ −9.225∗∗∗ −8.014∗∗∗ −6.931∗∗∗ −5.902∗∗∗ −4.935∗∗∗ −0.249∗∗∗
(0.103) (0.0875) (0.0812) (0.0865) (0.101) (0.00292)

Observations 63.764 63.764 63.764 63.764 63.764 63.764
R2 0.948 0.946 0.942 0.933 0.918 0.948

Spatially correlated standard errors in parentheses.
* p<0.10, ** p<0.05, *** p<0.01.

The semi-elasticities in our baseline estimation should therefore be closely related to
δj+µj ·κ in the estimation with temperature variability. Figure 18 presents these semi-
elasticities for the case of c=4◦C and, in gray, their logistic fit. For comparison, we also
show the logistic fit of the baseline semi-elasticities. As expected, given the results in
Table 4, they are very similar.12 In sum, these results suggest that the baseline empirical
specification captures not only the effects of changes in January-July temperatures, but
also the effects of changes in temperature dispersion. The results for other measures of
temperature variability are very similar.

Figure 18
Aggregate effect of temperature on fundamental amenities and productivities, accounting for

temperature variability.

12. The construction of the confidence intervals assumes that the coefficients of the augmented
damage function and the one for the regression of variability on temperature are independent.
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B.3. Sectoral Composition

Global warming can have heterogeneous effects across locations depending on their
sectoral composition. Nath (2020) and Cruz (2021) both document a particularly large
effect for agriculture. This could potentially bias our results since it implies that the semi-
elasticities of temperature on fundamentals are a function of the sectoral composition.
Hence, we extend our estimation of the damage functions to allow for this dependence,
and simulate the model with the new damage functions to compare these results with
those of the baseline scenario.

We focus on agriculture and the rest of the economy, given that this issue seems more
salient for this classification, and data for agricultural production at a granular level is
available from the Food and Agriculture Organization (FAO). We compute the share of
value added in agriculture for each 1◦×1◦ cell in the year 2000 as in Conte et al. (2021,
2022). Figure 19 shows that most locations of the world have a negligible contribution
of agriculture to GDP. The regions with the highest intensities on agriculture are the
North of Canada, Brazil, Sub Saharan Africa, North of China, Papua New Guinea, and
Southwest Australia.

Figure 19
Share of value added in agriculture.

Then, we extend the damage function to integrate the interaction of temperature
levels with the share of agriculture in value added, s(r),

log(xt(r))=

J∑
j=1

δxj ·Tt(r) ·1{Tt(r)∈Tj}+
I∑
i=1

βxi ·s(r) ·Tt(r) ·1{Tt(r)∈Ti}

+δz ·Z(r) ·1{xt(r)= āt(r)/ϕt(r)}+ι(g) ·1{xt(r)= b̄t(r)}+ιt(sx)+εt(r).
(B.4)

We partition the distribution of temperatures into J=20 and I=5. We set I <J to avoid
bins with no variation in the share of agriculture, something prevalent in regions with
negligible shares of agriculture. The semi-elasticity of xt(r) with respect to temperature,
δxj +βxi ·s(r), is now allowed to vary according to the level of temperature and the share
of agriculture in value added.13

13. We could additionally control for the share of agriculture in equation (B.4), but it is already
captured by the natural attributes, Z(r), and the block fixed effects, ι(g).
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Figure 20 presents the results of the estimation. The colored bars show the point
estimates for cells where no agriculture is performed, s(r)=0, and the gray bars those
for cells that exclusively produce agricultural goods, s(r)=1. Our empirical results imply
that agriculture is more climate-sensitive than the rest of the economic sectors for both
cold and hot regions and both amenities and productivities. In the coldest locations of
the world, an increase in local temperature of 1◦C generates a productivity improvement
about twice as large when a location is fully devoted to agricultural activities. We observe
a negative effect of similar magnitude when temperature rises in the hottest locations
of the world. For amenities, there is a similar relationship, although the costs at warm
temperatures seem to depend less on the agricultural share.

Figure 20
Aggregate effect of temperature on fundamentals, accounting for differences in the share of agriculture

in value added.

Figure 20 also plots the logistic smoothing for the baseline estimation. Since the
global share of agriculture is low, the logistic smoothing for no agriculture closely
approximates that of the baseline estimation. To simulate the model accounting for the
role of agriculture in shaping the damage functions, we construct eleven curves, given
by the logistic smoothing of δxj +βxi ·s, with s∈{0,0.1,··· ,1}, and allocate the damage
function that best approximates the agricultural share of each cell in year 2000. We
simulate the model under the assumption that the share of agriculture remains constant
over time. Figure 21 shows a similar spatial pattern of welfare losses relative to that of
Figure 8. The discrepancies, evident from the more pronounced colors, correspond to
the zones largely devoted to agricultural activities. Since most of these locations lie in
the coldest zones of the world, global welfare and real GDP losses are now 1 and 0.7
percentage points lower, respectively. Over time, we observe an attenuation of warming
impacts. Figure 22 shows that during the current century, the differences are negligible.
Nevertheless, by the end of the simulation, welfare and real GDP losses decline by roughly
two percentage points when we incorporate agricultural shares. Of course, in a couple of
centuries, agricultural shares might be very low everywhere as more countries go through
a structural transformation.

C. NATALITY RATES, ENERGY ELASTICITIES AND MIGRATION
COSTS

In this subsection, we outline the procedure to estimate the parameters of the natality
rate function, bℓ,bh,bT , bw, the elasticities of energy productivity growth to global real

https://doi.org/10.1093/restud/rdad042#figure.caption.8
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Figure 21
Welfare losses due to global warming with differences in the share of agriculture in value added.

Figure 22
Welfare and real GPD under baseline and with differences in the share of agriculture in value added.

GDP growth, υf ,υc and the migration cost function, m2(·). To construct the natality
rate function η(·), we set the parameter bT0 to target the global natality rate observed in
the year 2000, nw0 , and we impose the functional form of equation (3.23),

nw0 L0−
∫
S
ηy(log(y0(v));b

ℓ,bh)L0(v)H(v)dv=∫
S
ηT (T0(v),log(y

w
0 );b

T ,bw)L0(v)H(v)dv=

(0.5)bT0 L0+(0.5)bT2

∫
S

(
e−b

T
1 (T0(v)−b∗T )

2
)
L0(v)H(v)dv.

Hence, we can define bT0 as a function of the remaining parameters ♭=

(bℓ,bh,bT1 ,b
T
2 ,b

∗T ) and data on the initial period x0=(nw0 ,L0(·),y0(·),T0(·)). Local
population is obtained from the G-Econ database, local real income is constructed as
y0(r)=L0(r)

λu0(r)/b̄0(r) so that the ratio of utility to amenities is computed as in

https://doi.org/10.1093/restud/rdad042#equation.3.23
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Supplementary Materials Section I.2,14 and local temperature comes from the Berkeley
Earth Surface Temperature Database (BEST, Rohde and Hausfather, 2020),

bT0 (♭,x0)=2nw0 − 1

L0

∫
S

(
2ηy(log(y0(v));b

ℓ,bh)+bT2 e
−bT1 (T0(v)−b∗T )

2
)
L0(v)H(v)dv.

(C.5)

Analogously, we set the parameter bw to target the global natality rate observed in the
year 2020, nw20. The natality rates nw0 and nw20 are taken from the World Population
Prospects of the United Nations,

nw20L20−
∫
S
ηy(log(y20(v));b

ℓ,bh)L20(v)H(v)dv=∫
S
ηT (T20(v),log(y

w
20);b

T ,bw)L20(v)H(v)dv=

1

1+ebw[log(y
w
20/y

w
0 )]

∫
S

(
bT0 (♭,x0)+bT2 e

−bT1 (T20(v)−b∗T )
2
)
L20(v)H(v)dv. (C.6)

Hence, we can define bw as a function of the parameters ♭ and data on the initial and
twentieth period,

bw(♭,x0,x20)=
1

log(yw20/y
w
0 )

log


∫
S

(
bT0 (♭,x0)+bT2 e

−bT1 (T20(v)−b∗T )
2)

L20(v)H(v)dv

nw20L20−
∫
S η

y(log(y20(v));bℓ,bh)L20(v)H(v)dv
−1

.

(C.7)

Now, we describe the algorithm employed to jointly solve for the parameters and
functions of interest.

1. Guess m2(·),♭,υf ,υc and x20.
2. Run the model backwards for 50 periods using equation (I.50) of Supplementary

Materials Section I.4, taking the behavior of local historical temperature as in the
BEST data,15 and retrieve Lt(·) and yt(·).

3. Compute the natality rates at the country-level induced from the model.16 If the
difference between the model induced and the historical natality rates is small enough,
go to the next step. Otherwise, use the solution of (C.8) to update ♭ and go back to
step 2,

min
♭

SSR(♭)=

168∑
c=1

1999∑
t=1950

Lct

(
nc,datat −nc,modelt (♭)

)2
(C.8)

14. To solve for this ratio we require data on local wages and energy prices, which come from
G-Econ, EDGAR and BP databases. Further details of the data are described in Online Appendix A.

15. The backward solution of the climatic model does not provide very accurate results with respect
to the historical observations. Therefore, we prefer to employ observed past data.

16. We consider 168 countries, following the classification of Desmet et al. (2018).

https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf
https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf#equation.9.50
https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf
https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf
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st nc,modelt (♭)=

∫
v∈cη(log(y0(v)),Tt(v);♭)Lt(v)H(v)dv∫

v∈cLt(v)H(v)dv ,

where c denotes countries, t periods of time, Lct the weight given to each observation,
based on historical country-level population data, and uct the error between the model
and the data for each observation.
We solve (C.8) as follows: If SSR(·), evaluated at the guess, is small enough,
the procedure ends. Otherwise, we update ♭ in the j-th iteration as ♭j+1=♭j+

ϱ(X ′
jDXj)

−1(X ′
jDuj), where Xj is a matrix of size (168 ·50)×B comprising the

derivatives of nc,modelt (·) evaluated at ♭j , D a matrix of size (168 ·50)×(168 ·50)
comprising the population weights, uj a matrix of size B×(168 ·50) comprising the
errors evaluated at ♭j , and B the number of elements in the vector ♭.
At each iteration, the step size scalar parameter ϱ is set to one, and a candidate ♭∗j+1

is computed from the above procedure. If SSR(♭∗j+1)<SSR(♭j), then ♭j+1=♭∗j+1 and
the iteration is completed. Otherwise, ϱ is halved, a new ♭∗j+1 is computed, and the
process is repeated. The non-linear least square estimation concludes when SSR(♭j+1)
is small enough.

4. Compute the migration costs that target population distribution in the year 2005
using equation (I.54) of Supplementary Materials Section I.5. If the difference between
the guess and the targeted migration costs is small enough, run the model 20 periods in
the future, update x20 and go to the next step. Otherwise, use the targeted migration
costs to update m2(·) and go back to step 2.17

5. If the difference between the model induced, Ef,modelt , and historical data on global
emissions, Ef,datat , from 1950 to 1999 is small enough, run the model 20 periods in
the future, update x20 and go to the next step. Otherwise, update υf =(Ef,data1999 −
Ef,data1950 )/(Ef,model1999 −Ef,model1950 ) and go back to step 2.

6. If the difference between the model induced, Ec,modelt , and historical data on global
clean energy use, Ec,datat , from 1965 to 1999 is small enough, run the model 20 periods
in the future, update x20 and the algorithm concludes.18 Otherwise, update υc=

(Ec,data1999 −Ec,data1965 )/(Ec,model1999 −Ec,model1965 ) and go back to step 2. The goodness of the fit
for CO2 emissions, clean energy use, and natality rates is presented in Supplementary
Materials Section K.

D. CARBON CYCLE AND TEMPERATURE DOWN-SCALING

In this section, we describe the parametrization of the carbon cycle and the temperature
down-scaling. Regarding the evolution of the stock of carbon dioxide, displayed in
equation (2.13), the share of CO2 remaining in the atmosphere ℓ periods ahead,
(1−δℓ)=a0+

∑3
i=1(ai ·e−ℓ/bi), is approximated by a sum of exponentials, as in Forster

et al. (2007) and Joos et al. (2013). According to IPCC (2013), we set a0=0.2173,a1=
0.2240,a2=0.2824,a3=0.2763,b1=394.4,b2=36.54,b3=4.304. To simplify the evolution

17. Figure 54 in Supplementary Materials Section K displays the logarithm of migration costs of
the last iteration of the algorithm.

18. The BP database does not contain information on clean energy use for the years 1950-1964.

https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf#equation.9.54
https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf
https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf
https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf
https://doi.org/10.1093/restud/rdad042#equation.2.13
https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf#figure.caption.19
https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf
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of carbon stock, we rewrite the law of motion as

St+1=S0,t+1+

3∑
i=1

Si,t+1, S0,t+1=S0,t+a0(E
f
t +Ext ), (D.9)

Si,t+1=(e−1/bi)Si,t+ai(E
f
t +Ext ), i∈{1,2,3}. (D.10)

Thus, the model requires the initial values of the four layers, S0,i,i∈{0,1,2,3}. Following
Golosov et al. (2014), we consider S0,2000=2,429 GtCO2 as the sum of the pre-industrial
stock, Spre-ind=2,200 GtCO2, plus a share a0 of the historical cumulative carbon
emissions,

∑1999
ℓ=1945(E

f
ℓ +Exℓ )=1,054 GtCO2. The remaining three layers, S1,2000=

224,S2,2000=178,S3,2000=37 GtCO2, are computed as the discounted sum of past
emissions.19

The response of global temperature to a unit of forcing can be represented by a sum
of two exponentials, ζℓ=

∑2
j=1(cj/dj) ·e−ℓ/dj , as in Boucher and Reddy (2008). We take

the forcing sensitivity to be φ=5.35 and the climate parameters to be c1=0.631,c2=
0.429,d1=8.4,d2=409.5.20 Analogously to the carbon circulation, we rewrite the global
temperature module as

Tt+1=T1,t+1+T2,t+1, Tj,t+1=(e−1/dj )Tj,t+
cj
dj

Ft+1, j∈{1,2}, (D.11)

where T1,2000=1.01◦C is the discounted sum of past forcings (from 1825 to 2000)
and T2,2000=8.19◦C is the discounted sum of past forcings plus the pre-industrial
temperature Tpre-ind=8.1◦C. We interpret temperature as that over land, excluding
that over water.

To construct the mapping from global to local temperature, we estimate equation
(2.16), where the object of interest is the temperature scaler function, g(·). We
parametrize this function as an additive separable Chebyshev polynomial of order 10 in
the following arguments: latitude, longitude, product of latitude and longitude, mean
elevation, distance to the coast, distance to the ocean, distance to a water body,
vegetation density, albedo and share of land covered by ice. Therefore, we can define
the function g(·) as shown in equation (D.12), where Xi(·) denotes each of the ten
covarites mentioned in the previous paragraph, Xj

i (·) is the Chebyshev polynomial of
order j∈{1,··· ,10} of covariate i and βji is the set of coefficients to be estimated by

19. Historical data for CO2 stock and projections for CO2 emissions and forcing for every RCP are
taken from http://www.iiasa.ac.at/web-apps/tnt/RcpDb.

20. Etminan et al. (2016) provides new calculations of the radiative force with respect to Myhre
et al. (1998). They propose a GHG concentration-dependence for the forcing sensitivity, so that it can
be expressed as φ=5.35+φ1|St−Spre-ind|+φ2(St−Spre-ind)2+φN (Nt+Npre-ind)/2, where Nt denotes
the stock of nitrous oxide.

https://doi.org/10.1093/restud/rdad042#equation.2.16
http://www.iiasa.ac.at/web-apps/tnt/RcpDb


CRUZ & ROSSI-HANSBERG ECONOMIC GEOGRAPHY OF WARMING 15

OLS,21

g(r)=

10∑
i=1

10∑
j=1

βjiX
j
i (r), Xj

i (r)=cos

(
j ·arccos

(
X̃i(r)

maxs∈S |X̃i(s)|

))
, (D.12)

X̃i(r)=Xi(r)−
1

2

(
min
s∈S

Xi(s)+max
s∈S

Xi(s)

)
.

To estimate (2.16) and (D.12), we construct the temperature variables as follows:
Tbase(r) is the average January-July temperature from 1950 to 1979 in cell r, Tt(r)
is the yearly January-July temperature from 1980 to 2017 in cell r, and Tbase is the
global average temperature, where each cell is weighted by land size. Finally, we provide
more weight to more recent observations, according to ωt=(2018−t)−1. The estimation
procedure is able to capture 83% of variation in the data.

E. ADDITIONAL RESULTS FOR THE BASELINE RCP 6.0
QUANTIFICATION

Figure 23 shows the ratio of fundamental amenities and productivities in 2200 in the
baseline scenario relative to the counterfactual scenario without global warming, Figure
24 presents the evolution of global population and population density in 2200 in the
baseline scenario relative to the counterfactual scenario without global warming and
Figure 25 displays the uncertainty in welfare losses from damage functions and elasticity
of substitution between energy sources, all of them for the RCP 6.0 quantification.

Figure 23
Gains and losses in amenities and productivities from global warming RCP 6.0 in the year 2200.

F. DECOMPOSING THE LOSSES FROM GLOBAL WARMING BY
SOURCE

As we argued in the main text, the two main direct channels through which global
warming affects economic outcomes are the effects on amenities and productivities.

21. When constructing the product of latitude and longitude, we first normalize latitude and
longitude so that they lie between minus one and one, and then we multiply them. That is, we define
this product as Xj

lat(·)×X
j
lon(·).

https://doi.org/10.1093/restud/rdad042#equation.2.16
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Figure 24
Spatial pattern of population and global population, RCP 6.0.

Figure 25
Uncertainty in welfare losses from damage functions and energy substitution, RCP 6.0.

In fact, incorporating the effect of temperature on amenities at this level of spatial
disaggregation is, we believe, novel to our study. To understand the contribution of each
of these two sources of economic effects, we decompose the warming damages as those
arising exclusively from the effect of temperature on local amenities and those arising
exclusively from the effect of temperature on local productivities. That is, we calculate
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two additional counterfactual scenarios setting each of the damage functions to zero for
every period and cell, respectively.

Figure 26
Distribution of real GDP and welfare losses by damage source.

Figure 26 compares the cross-section of losses in the PDV of real GDP and welfare
across damage sources. The spatial distribution of real GDP losses is mainly driven
by the productivity component. The amenity component affects real GDP through
its effect on the spatial distribution of population and the corresponding effects of
investment. However, the effects are small compared to the direct impact of productivity.
In contrast, when we analyze the cross-sectional distribution of welfare, the role of
amenities is very large and governs the overall shape of the distribution. For welfare, the
productivity component is more uniform across regions with implied losses for almost all
locations. This exercise highlights the importance of incorporating the effect of changes
in temperature on amenities when assessing the local welfare impact of global warming.

Figure 27 displays the spatial composition of losses in welfare when the damage
function only takes into account damages on amenities or productivities, respectively.
The large dispersion in the effect coming exclusively from amenities implies large gains in
Russia, Canada, and Alaska, and losses in South America, Africa, and India. In contrast,
the spatial distribution of the effects coming exclusively through the productivity channel
implies losses in most of the southern regions. All southern regions, including Australia,
suffer, and the losses reach further north to Mexico and the Southern part of the U.S.,
as well as India and China. Clearly, the spatial distribution of the losses from global
warming that result from each source are quite different.

To end this section, Figure 28 decomposes the evolution of economic losses over time.
When we consider damages on amenities only, cold regions become more amenable for
living, which creates an incentive for people to move to some of the most productive
places in the world. This migration boosts agglomeration and thus raises global average
real GDP slightly for the first 200 years. Eventually, as temperatures decline due to
the rising cost of extracting fossil fuels, this process reverses. Welfare, in contrast,
exhibits only losses that accelerate as rising temperatures deteriorate amenities in the
developing world. When we isolate the damages from warming coming from changes in
local fundamental productivity, the evolution of losses in real GDP is similar to the
baseline scenario for the first century. Without the impact of climate on amenities,
however, less people move north which results in less agglomeration and slightly larger
real GDP losses. The difference is much larger when considering welfare. The effect
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Figure 27
Spatial distribution of real GDP and welfare losses due to global warming by damage source.

on amenities essentially doubles the impact of global warming on welfare throughout.
Overall, Figure 28 shows that the effect of temperature on fundamental productivity and
the effect of temperature on amenities, each account for about half of the total welfare
losses from global warming.

Figure 28
Real GDP and welfare losses by damage source over time.

G. ADDITIONAL ADAPTATION RESULTS

G.1. Dispersion of Idiosyncratic Preferences

As an alternative way to measure the importance of migration as an adaptation
mechanism, we modify the variance of the idiosyncratic shocks governing taste across
locations. A greater value of Ω implies more dispersion in agent’s preferences across
regions, so that mobility responses are mostly driven by idiosyncratic motives, rather
than spatial differences in utility adjusted for the migration cost of entering the region.
Consequently, the parameter 1/Ω can be interpreted as the elasticity of migration to
ut(r)/m2(r), as shown in equation (2.2). A higher 1/Ω therefore implies a larger elasticity
of migration to the factors driving utility, ut(r), which, as in standard spatial models,
leads to more migration. However, it also implies a larger elasticity to the frictions to

https://doi.org/10.1093/restud/rdad042#equation.2.2
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enter a region, m2(r), which results in smaller migration to regions that are hard to enter.
The implications for overall migration are, therefore, not straightforward and depend on
the direction of flows and the geography of m2(r). Below, we evaluate the spatial and
temporal impacts of global warming to reductions in the parameter Ω to 50% and 25%
of its baseline value.

Figure 29 displays the effects of climate change on welfare, when considering
economies with lower Ω. The left panel presents the difference-in-difference effect of Ω on
the effect of temperature. Red areas experience larger losses (or smaller gains) with larger
1/Ω, while the opposite is the case for blue areas. A larger 1/Ω has a negative effects
on northern and southern regions, as they become less populated, inhibiting innovation.
For these areas, the effect of 1/Ω acts as a detriment to migration. Consistently, regions
close to the Equator, which are easy to enter, benefit from preserving population in those
locations (since they now feature less congestion due to the higher migration elasticity to
ut(r)). By reducing mobility across space, a higher elasticity 1/Ω deepens the aggregate
welfare losses over time: diminishing the parameter Ω to a quarter of its original value
rises global welfare losses by 2 percentage points (see right panel of Figure 29).

Figure 29
Welfare across different migration elasticities.

G.2. Imposing Border Frictions

In this subsection, we describe our methodology to compute migration costs within and
across a border. We also present an additional evaluation of the impacts of global warming
when rising the costs of migrating from the developing into the developed world. First,
we extend the specification of the migration costs, while preserving their multiplicative
structure,

m(r,r′)=


1 if r=r′,

m1(r)m2(r
′) if r ̸=r′,D(r)=D(r′),

m1(r)n1(D(r))m2(r
′)n2(D(r′)) if r ̸=r′,D(r) ̸=D(r′),

where D(·) is a function mapping each cell to a region (e.g., Africa and Rest of
the World, or developing and developed world). Staying in the same cell entails no
cost. Moving within each region involves a cost given by the product of an origin-
, m1(r), and a destination-specific cost, m2(r

′). Moving across regions implies a cost
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given by the product of an origin-, m1(r) ·n1(D(r)), and a destination-specific cost,
m2(r

′) ·n2(D(r′)). Since staying in the same location is costless, m1(r)=1/m2(r) and
n1(D(r))=1/n2(D(r)). Note that when setting n2(D(r))=1 for each r, we go back to
our baseline specification.

Second, we construct the functions m2(·) and n2(·) as follows. We use the procedure
outlined in Supplementary Materials Section I.5 to construct the migration costs, and
we name the resulting estimate m̃2(·). Then, we define the function n2(·) as the weighted
average of m̃2(·), with weights given by the population shares of the year 2000,

n2(d)=

(∫
S
m̃2(r)L0(r)H(r) ·1{D(r)=d}dr

)(∫
S
L0(r)H(r) ·1{D(r)=d}dr

)−1

.

We define the function m2(·) as, m2(r)=m̃2(r)/n2(D(r)). Consequently, m2(·) governs
the cost of moving within a region and n2(·) the cost of moving across regions.

Doubling the Cost of Migrating to the Developed World. Figure 30 presents the
welfare impact of climate change in the baseline relative to the case where we double
the cost of entering the developed world (the regions included as part of the developing
world are outlined in black in the figure). As before, red areas have larger losses when the
border frictions are more stringent. The left panel shows that the most affected regions
are northern latitudes, due to the reduction in in-migration and, hence, innovation. The
South of the United States, Western Europe, and Australia display lower welfare losses
from global warming with higher border costs. In the baseline scenario, those places
experience null or small negative impacts from global warming. Now, they benefit from
the larger demand for their residents in northern locations, induced by climate change.
The lower congestion costs also help them. The right panel shows that higher welfare costs
of moving from the developing to the developed world affects both regions negatively.
Importantly, a one hundred percent rise in the border costs implies that welfare losses
increase by 2.5 times in the developed world over the long-run.

Figure 30
Welfare with higher costs of moving from the developing to the developed world.

G.3. Trade

Figure 31 presents the spatial and dynamic effect on welfare when rising trade costs to
1.5 and 2. The left panel presents the spatial distribution of the relative effect of global

https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf
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warming on welfare in the baseline scenario with respect to the same relative effect in the
scenario with higher trade costs. In this difference-in-differences calculation, large values,
represented in red, identify areas that are hurt by larger trade costs. As is evident in
Figure 31 trade costs have a negligible effect on the cost of global warming.

The spatial pattern in Figure 31 is markedly different than the one for migration.
As with migration, larger trade costs make warming more harmful in Africa, India, and
China. However, it also makes warming more harmful in Central and South America, as
well as Europe, and less harmful in northern regions in Canada, Scandinavia, and Russia.
Trade has little impact on northern regions since their relative isolation implies that they
trade little with the rest of the world anyway. In contrast, regions in more central, well
connected geographies, rely more on trade and so they suffer from the double impact of
higher trade costs and higher temperatures. In addition, as with migration, higher trade
costs reduce incomes which results in higher natality rates, particularly in the developed
world, leading to additional congestion. Brazil, Africa, and India are affected the most.

The right panel of Figure 31 shows the temporal evolution of average welfare. The
small effect of trade is evident, particularly when conditioning on the temperature path
(solid curves). Once we take the effect of changes in income and population on the
evolution of temperature into account (dashed curves), we get smaller losses from global
warming with higher trade costs in the short-run, but larger ones in the long-run. Overall,
adaptation through trade seems to play only a minor role in our results.

Figure 31
Welfare across different iceberg trade costs.

G.4. Innovation

Firm investments respond to market size and allow a region’s technology to grow relative
to that of other regions. Innovation improves northern regions’ productivity, as they
become warmer and gain population. It also accelerates the relative losses of regions
that get too warm and lose market size due to the implied lower productivity and lower
amenities. We study here the effect of lowering γ1 (or, equivalently, increasing ξ). Changes
in these parameters amount to changing the returns or cost of innovation proportionally
across locations. Larger costs of innovation reduce real GDP growth and, therefore,
growth in CO2 emissions, curbing the temperature path. As with trade and migration
costs, the lower real GDP growth pushes upwards natality rates and global population.

Figure 32 presents the spatial and dynamic implications of lower innovation returns
(or higher innovation costs). The left panel presents the difference-in-differences for the
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Figure 32
Welfare across different innovation costs.

welfare consequences of global warming in the baseline relative to the exercise with
high innovation costs. The spatial pattern of this measure is simpler than the one for
migration. The upmost northern regions are hurt more (benefited less) by global warming
when innovation costs are higher. Developing these areas by improving their productivity
and moving economic activity to the north becomes more costly. The same phenomenon
is apparent in the upmost southern regions, including Oceania and the southern tip of
South America and Africa.

The right panel of Figure 32 presents the dynamic evolution of the cost of global
warming. In all cases, with and without feedback effects from temperature, larger
innovation costs lead to smaller losses from global warming.22 The reason is that larger
innovation costs imply smaller benefits from density in locations that are eventually
negatively affected by higher temperatures. In particular, Africa, India, and China
experience lower technology growth and, therefore, attract less migrants from other
locations. Given that these are the regions more affected by temperature rises, the average
cost from this phenomenon declines. This effect builds up over time and is significant only
after 2150. These results illustrate the importance of studying the impact of adaptation
mechanisms in a spatial model. The reason that higher innovation costs result in smaller
costs from global warming is fundamentally spatial, as explained above.

H. ADDITIONAL RESULTS ON ENVIRONMENTAL POLICIES

H.1. Effect of Carbon Taxes Across Space

Figure 33 displays the welfare impact across locations of a spatially and temporally
constant carbon tax of 200%.

22. This result is robust to different values of the elasticity of utility to real income. As argued in
Supplementary Materials Section L.4, lower values of this parameter modify the level of utility, but not
allocations. Since the effect of innovation costs on welfare losses depends on the spatial distribution of
economic activity, higher innovation costs reduce welfare losses, albeit by different amounts, according
to the elasticity of utility to real income.

https://rossihansberg.economics.uchicago.edu/EGGW_Supp.pdf
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Figure 33
Local welfare effects of a carbon tax of 200% with a discount factor of β=0.965.

H.2. Abatement

Here, we present the evolution of CO2 emissions, temperature, real GDP and welfare
over time with carbon taxes and an abatement technology that appears in 2100. Figure
34 introduces the abatement technology to the exercises presented in Figure 13. The
solid curves present CO2 emissions and global temperature under different carbon taxes
when the abatement technology is not available. The dashed curves, present the results
with the introduction of a perfect abatement technology in 2100. When the abatement
technology is introduced, the flow of CO2 into the atmosphere drops discontinuously and
permanently to zero. The cut in the cumulative carbon dioxide emissions modifies the
temperature path, which declines until it reaches a new and much lower steady-state.
Figure 35 replicates Figure 14 but includes, in dashed lines, the global average real GDP
and welfare effects of the implementation of a carbon tax relative to a scenario with no
carbon taxes, when we introduce the abatement technology in 2100. Since the abatement
technology eliminates the effect of carbon emission on temperatures, and therefore on
amenities and productivity, the deceleration of growth caused by global warming that
we observe after 2100 without an abatement technology is now avoided.23

H.3. Clean Energy Subsidies

At impact, the subsidy on clean energy leads to a reduction in the composite price of
energy. Given our Cobb-Douglas production function, the subsidy acts like a positive
production subsidy that increases output and encourages innovation, which accelerates
growth. Given that the model features dynamic spillovers that are not internalized in
equilibrium, such a subsidy is potentially beneficial. Furthermore, the subsidy leads
to declines in energy costs that vary across locations. Areas using more clean energy

23. Note that relative real GDP and welfare can be slightly lower in the abatement case for a
couple of decades after the invention of the abatement technology. The reason is that the difference in
temperatures between the baseline scenario with and without abatement can be larger than the difference
in temperature with and without abatement in the scenario with a carbon tax, depending on the second
derivative of the temperature function at the time in which the abatement technology arrives. After a
few decades, this effect is always dominated by the faster increases in temperature in the case without
abatement.

https://doi.org/10.1093/restud/rdad042#figure.caption.14
https://doi.org/10.1093/restud/rdad042#figure.caption.15
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Figure 34
CO2 emissions and global temperature for different carbon taxes with an abatement technology

introduced in 2100.

Figure 35
Real GDP and welfare for different carbon taxes with an abatement technology introduced in 2100.

relatively to fossil fuels undergo greater declines in the composite price of energy. On
average, developed countries tend to be more intensive in clean energy, attracting more
households to those places. The relocation of people towards the most productive places
rises global real GDP and welfare, but also lowers natality rates and world population
in the long-run. A lower population in the Balanced Growth Path leads to lower long-
run growth rates. In sum, subsidies increase output and welfare in the short-run, but
eventually reduce them in the long-run. As with carbon taxes, the overall economic
effects from the subsidy depend on the discount factor. In this case, however, the sign of
the short- and long-run effects are reversed relative to the carbon tax. Larger discount
factors result in smaller gains. Table 5 presents these results.24

24. The result that clean energy subsidies lead to welfare gains despite being ineffective at reducing
carbon emissions is related to the literature on interactions between climate policy and pre-existing
distortions. Goulder et al. (2016) argues that emissions pricing’s advantage over intensity standards
(establishment of a floor for the ratio of clean electricity to total electricity) depends importantly on
how policies interact with pre-existing distortions, especially with capital. Intensity standards have a
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TABLE 5
PDV of real GDP and welfare gains for different clean energy subsidies and discount factors.

PDV of real GDP Welfare
BGP growth rate β=0.965 β=0.969 BGP growth rate β=0.965 β=0.969

s=0% (RCP 8.5 base) 3.076% 1 1 2.971% 1 1
s=25% 3.073% 1.012 1.005 2.967% 1.007 1.003
s=50% 3.066% 1.034 1.008 2.959% 1.021 1.006
s=75% 3.044% 1.098 1.007 2.935% 1.053 1.000

Figure 36
CO2 emissions and global temperature for different clean energy subsidies.

Figure 36 presents the evolution of CO2 emissions and global temperature for different
clean energy subsidies and Figure 37 the spatial distribution of welfare gains from a 75%
clean energy subsidy relative to the baseline. The left panel shows the heterogeneous
spatial effects from the subsidy. As we discussed above, the subsidy has only a small
impact on the temperature path. The main source of spatial heterogeneity comes from
the differences in the relative price of fossil fuels and clean energy.25 Scandinavia has
a large relative price of fossil fuels (partly because of other prevailing policies) and so
it benefits more from the subsidy than the Arabian peninsula or Australia, where fossil
fuels are relatively cheap. Paraguay benefits significantly, since clean energy is cheap there
due to the abundance of hydroelectric power. The right panel presents the distribution of
welfare gains. Parts of Africa and South America gain in welfare 7%, while some regions
in North Africa or the Arabian peninsula gain only 3%. Higher discount factors would
make some of these regions lose.
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