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Abstract

Global warming is a phenomenon expected to have heterogeneous effects across geographic locations
and economic sectors. To assess its welfare consequences and the reallocation of workers across different
markets, I develop a dynamic economic model with the patterns of structural transformation and spatially
distinct labor markets facing varying exposure to warming damages on productivity. I incorporate trade
of goods and migration across regions and industries, to account for the ability of agents to adapt to this
phenomenon, and non-homothetic preferences, to reproduce the reallocation of economic activity when
income grows. To measure workers’ mobility, I collect data from censuses and population surveys, and
employ methodologies from the demographic literature to provide novel estimates of worldwide bilateral
migration flows. To identify the non-linear effects of temperature on productivity, I exploit weather fluctu-
ations in a long panel and find that agricultural productivity in the hottest countries declines by 6% when
temperature rises 1◦C. The model, quantified for 6 sectors and 287 countries and subnational units, sug-
gests that workers in agriculture face welfare losses three times larger than the average worker and that
employment in this sector increases. Although hot regions might reduce the production of agricultural
goods and import them from less affected locations, sectoral specialization is mainly driven by the shift in
consumption expenditure towards the subsistence goods, as warming reduces global income.
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Princeton University. This research benefited from financial support from the International Economics Section at Princeton University.
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1 Introduction

Agriculture has been the focus of much of the research on climate damages. Unfortunately, much less is
known about the impact of climate in other industries. To the extent that economic sectors vary in the num-
ber of tasks performed outdoors relative to indoors, it is natural to expect different climate sensitivities.1

Hence, countries with similar temperature levels, like Congo and Australia, might experience different
warming damages, as the former is mainly agricultural and the latter mostly oriented to services. Further-
more, increases in temperature not only affect productivity according to the industrial composition, but
also according to the geographic location: rises in temperature are expected to be damaging in already hot
regions, but beneficial in cold regions. Given the heterogeneous impacts in productivities across spatial and
sectoral dimensions, this paper evaluates the reallocation of workers across industries and, ultimately, the
welfare losses originated by this phenomenon.

To the extent that productivity might decline more in some markets and decline less, or even improve,
in others, the possibility of trading goods across regions is expected to attenuate warming damages, as pro-
duction of the most impaired industries might shift towards more temperate locations, while tropical areas
might specialize in other, less climate sensitive, sectors. Nonetheless, comparative advantage is not the only
factor driving sectoral specialization. Since global warming is expected to reduce average productivity and
thus household’s income, consumption patterns would shift towards the subsistence goods. The patterns
of structural transformation would augment the relative demand for agricultural goods, rising the employ-
ment in this sector. As discussed in Nath (2020), the ultimate effect on sectoral reallocation is a horserace
between the production and consumption specialization.

The final effect of sectoral reallocation is a quantitative question that requires the development and es-
timation of a model that recognizes that the strength of the production and consumption specialization is
mediated by the cost of moving goods and persons across markets. Hence, I develop a dynamic economic
model with the patterns of structural transformation and spatially distinct labor markets facing varying ex-
posure to warming damages on productivity. In this assessment model, workers value consumption across
goods according to non-homothetic preferences, so that an increase in income reduces the consumption
share of subsistence goods, namely, agricultural goods. The model incorporates non-homothetic prefer-
ences to reproduce the reallocation of economic activity across sectors when income grows. In addition,
workers face a forward-looking dynamic decision, in terms of where to reside and work in the next period,
so that the migration costs depend on both the market of origin and destination, and a market is defined
as a region-sector pair. In each market, competitive firms produce intermediate varieties, using labor, land,
energy, and materials from every sector. Trade in intermediate varieties is costly. The model explicitly rec-
ognizes the role of trade of goods and migration of workers, to account for the ability of agents to adapt
to this phenomenon. Energy is produced from two sources: clean energy or fossil fuels. The use of the
latter type of energy generates carbon dioxide emissions that accrue in the atmosphere, warming up the
Earth, and rising local temperature. The modification of local climate conditions distort the evolution of
productivity faced by firms in heterogeneous ways across regions and sectors.

To underscore the vast heterogeneity in temperature and industrial composition across geographic lo-
cations, I pursue a high level of resolution and take the model to the data by considering 6 economic sectors

1Seppanen et al. (2003) surveys lab experiments studying the relationship between temperature and labor productivity, by ran-
domly assigned subjects to rooms of different temperatures and asked them to perform cognitive and physical tasks. There is a general
detriment in work performance when temperatures exceeded a certain threshold.

2



and 287 regions.2 Since most of the trade and migration flows occur within, rather than across national
borders, I disaggregate the 6 largest countries, in a demographic and economic sense, into their subnational
constituent units, namely, United States, Canada, Brazil, India, China and Russia.3 The quantification of a
multi-sector multi-region dynamic assessment model with the aforementioned mechanisms at such level of
industrial and spatial resolution implies an intensive data collection process. To this end, I resort to a large
array of international and domestic data on consumption, employment, value added, fossil fuels, and clean
energy use, to construct these variables at the market-level. In addition, I employ international trade and
national customs data to measure national and subnational sector-specific commercial flows.

Measuring the worldwide mobility patterns of workers across markets is challenging, due to the lack of
reliable international migration flow data.4 Due to this constraint, a branch of the demographic literature
(Abel, 2013; Abel and Sander, 2014; Azose and Raftery, 2019) has inferred migration flows from changes
in bilateral migrant stocks across periods. Migration stocks can be collected from countries’ censuses or
population surveys, as they only require information on the number persons by birthplace in each location
at a particular point in time. Therefore, I resort to a large set of international and national sources of migra-
tion stocks, and extend the methodologies developed by this strand of the literature to compute bilateral
migration flows across countries, subnational units and economic sectors, leading to a migration matrix
with almost three million entries across markets of origin and destination.

To quantify the impact of temperature increases on productivity, I assemble a long panel of weather
fluctuations and value added productivity, and exploit the temporal variation in a fixed effect econometric
model to identify the non-linear effect of warming on productivity. Agriculture and construction stand
out as the most climate sensitive sectors, so that an increase of local temperature of 1◦C in the coldest
countries of the world significantly rises productivity by 3%. But in the hottest countries, productivity
declines by roughly 6%.5 Finance and government and other services show minuscule and insignificant
results. The heterogeneity of sectoral responses to temperature increases asks for a granular assessment of
this phenomenon. The aforementioned results hold under an extensive set of robustness exercises.

The simulation of the model suggests a huge degree of heterogeneity in terms of welfare across locations.
Workers in India are projected to suffer welfare losses 15 times larger than the global average. However,
some regions are expected to be benefited, states in Far East Russia might experience welfare gains as large
as 10%. The heterogeneity in temperature in the African Continent leads to smaller losses in the northern
countries relative to the central regions, as their lower temperatures allows them to harness in the com-
parative advantage in producing agricultural goods to attenuate the warming damages. The heterogeneity
in industrial composition implies higher welfare losses in the Northern States of India and the Southern
Coastal Provinces of China, as they are mostly agrarian in comparison with the rest of the national territory.
The spatial composition of welfare losses in the United States and Canada does not largely respond to the

2The economic sectors of interest are agriculture, industry, construction, trade and transportation, finance, and government and
other services.

3To properly gauge the distribution of warming damages, it is not only important to analyze a larger number of regions and
sectors, but also to model their local characteristics and underscore the interactions, in terms of goods and workers, among them
(Caliendo et al., 2017).

4In many countries, such data is not collected, as reporting systems are expensive, and the ones that collect them have different
definitions of what constitutes a migrant in terms of the length or purpose of stay, and might only consider the formal migration
movements. Therefore, missing and non-comparable data preclude an accurate measurement of the global migration patterns.

5Relative to these sectors, trade and transportation display smaller but significant results. Relative to trade and transportation,
industry exhibits smaller responses.
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allocation of agriculture and construction, since these sectors represent a small share in the total economy.
Instead, the trade and transportation sector mainly explains the differences across states.

The heterogeneity of productivity responses to higher temperature induce a reallocation of workers
across economic sectors and geographic locations. On aggregate, warming rises the employment level in
agriculture and reduces it in services. Although hot regions have the possibility to reduce the production
of agricultural goods and import them from less affected locations, sectoral specialization is mainly driven
by the shift in consumption expenditure towards the subsistence goods, as warming reduces global in-
come. As a consequence, workers in the agriculture sector experience the largest welfare losses: three times
higher than the average worker. Even though at the global scale, the higher subsistence food requirement
dominates the comparative advantage effect, such balance varies over space. In poor and warm countries,
undergoing the largest income declines, the increase of employment in agriculture is the highest. Therefore,
when temperature rises the forces of structural transformation perversely allocate more workers into the
most affected markets.

This paper contributes to several strands of the literature. First, this paper quantifies bilateral migration
flows across markets at a global scale and embeds these estimates in a micro-founded model. A branch of
the literature (Schutte et al., 2021; Missirian and Schlenker, 2017a,b) has empirically estimated the reaction
of migration to changes in temperature. Their limited geographical scope precludes a global analysis of
the migration patterns. Alternatively, some studies have constructed economic models of climate change
integrating migration of households, but they lack a micro-founded motive (Benveniste et al., 2020), or
assume extreme migration frictions (Desmet and Rossi-Hansberg, 2015; Conte et al., 2020), mainly free
mobility across sectors. Second, this work advances on the estimation of warming damages on fundamental
productivities, rather than on endogenous economic objects, like GDP or GDP per capita, (Burke et al., 2015;
Dell et al., 2012), or on productivities for a subset of industries (Somanathan et al., 2021; Zhang et al., 2018;
Schlenker and Roberts, 2009) or geographic locations (Colacito et al., 2019).

Finally, I exploit recent contributions on spatial dynamic economic models (Caliendo et al., 2019, 2021;
Desmet et al., 2018; Kleinman et al., 2021) to accommodate the essential features of structural transforma-
tion (Comin et al., 2021; Tombe, 2015), and integrate an endogenous energy and climate component (Anthoff
and Tol, 2014; Hope and Hope, 2013; Nordhaus, 2017). There is an incipient literature evaluating the eco-
nomic consequences of global warming through the lens of these type of models. In a one-sector model,
Cruz and Rossi-Hansberg (2021) evaluate the effect of increases of temperature on the aggregate dynamic
behavior of the economy, by developing a model with endogenous population growth and local techno-
logical innovations. Desmet and Rossi-Hansberg (2015) and Conte et al. (2020) evaluate the reaction of the
local growth rate of the agriculture and non-agriculture sectors when temperature rises, assuming labor is
freely mobile across sectors and abstracting away from the changes in consumption specialization. Rudik
et al. (2021) construct a forward-looking dynamic spatial model with warming damages on productivity
growth rates and amenities, whose quantification mainly focuses on the United States, hampering a proper
assessment of the migration frictions elsewhere in the world, and keeping fixed the consumption patterns
over time. Nath (2020) pioneers the study of sectoral specialization, considering that both production and
consumption patterns might respond to changes in temperature, in an economy with a coarser industrial
and spatial resolution (three-sector country-level) and extreme mobility frictions (free industry switching
but precluding spatial mobility).

This paper is organized as follows: Section 2 describes the economic model of global warming. Section
3 outlines the solution method. Section 4 discusses the quantification of the model. Section 5 explores the
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effects of warming on welfare and labor reallocation. Section 6 concludes.

2 The Model

I develop a spatial dynamic general equilibrium model. Time is discrete and the economy has J sectors and
R regions. In each sector and region, there is a mass of workers who supply labor inelastically. Workers
decide how much to consume of every good according to non-homothetic preferences. Additionally, they
face a forward-looking dynamic decision of where to reside and work in the next period. In each region,
there is an immobile landlord who rents the fixed factor to the firms and decides how much to consume of
every good. In each market, there is a continuum of firms producing intermediate varieties, using labor,
land, energy and materials from every sector. These intermediate varieties can be costly traded across re-
gions. Final firms bundle varieties (from home and abroad) to produce final goods, which can be used as
consumption by workers and landlords or as materials by firms in the production of intermediate varieties.
Energy inputs can come from clean sources or fossil fuels. The use of the latter type of energy generates
carbon dioxide emissions that accrue in the atmosphere, warming up the Earth and rising local tempera-
ture. The modification of local climate conditions distorts the evolution of productivity faced by firms in
heterogeneous ways across regions and sectors.

2.1 Workers

In each sector j and region r, there is a mass of workers who supply one unit of labor inelastically at the
market wage wjr

t . Given the workers’ income, they decide how to allocate consumption over local final
goods from all sectors through a CES non-homothetic aggregator, as in Comin et al. (2021).6 More precisely,
workers minimize expenditure subject to a utility level, implicitly defined by the constraint (1),

wjr
t = min

J∑
ȷ̃=1

pȷ̃rt c
(jr)(ȷ̃)
t

st

J∑
ȷ̃=1

(
γ ȷ̃
) 1

ς

(
cjrt

)−ϑȷ̃

ς
(
c
(jr)(ȷ̃)
t

) ς−1
ς

= 1, (1)

where c(jr)(ȷ̃)t denotes the consumption level of good ȷ̃ by a household working in sector j and residing in
region r, cjrt represents the utility level, or real consumption, of a worker in market jr, where a market is
defined as the pair of a sector and a region, and pȷ̃rt is the price of goods purchased from sector ȷ̃ for final
consumption in region r. The solution of the expenditure minimization problem defines the consumption
share of good ȷ̃ by a worker in market jr, s(jr)(ȷ̃)t , relative to her total consumption spending,

s
(jr)(ȷ̃)
t =

pȷ̃rt c
(jr)(ȷ̃)
t

wjr
t

= γ ȷ̃

(
wjr

t

pȷ̃rt

)ς−1 (
cjrt

)ϑȷ̃

. (2)

The parameter γ ȷ̃ is the fixed sectoral taste of good ȷ̃, ς represents the elasticity of substitution between

6I choose this specification, rather than Stone-Geary or other types of non-homothetic preferences (Boppart, 2014) because they can
accommodate an arbitrary number of goods, provide a better fit to the patterns of structural transformation and given their log-linear
structure they are particularly tractable with the hat-algebra method.

5



goods, and ϑȷ̃ governs the sector ȷ̃-specific income elasticity.7 When ϑȷ̃ varies across goods, an increase in
income induces a more than proportional rise in consumption of the goods with income elasticity larger
than one. This preferences collapses to the standard CES aggregator when ϑȷ̃ = ς − 1 and Cobb Douglas
when, in addition, ς = 1.

After consuming and working, each household observes the conditions in all markets and decides where
to reside and work in the next period. Workers are forward-looking, have perfect foresight and discount
the future at a rate β. The dynamic migration decision follows Caliendo et al. (2019) and Artuç et al. (2010).
Moving from market jr to j′r′ entails a publicly known bilateral cost, χ(jr)(j′r′)

t , measured in terms of
utility and an idiosyncratic benefit, ϵj

′r′

t , which is independently and identically distributed across workers,
markets and periods, has mean zero and is observed by the worker before the migration decision.

Consequently, the worker’s problem can be posed as the following dynamic discrete choice model,

vjrt = log(cjrt ) + log(Bjr
t ) + max

j′r′

(
−χ(jr)(j′r′)

t + ϵj
′r′

t + βEvj
′r′

t+1

)
. (3)

The contemporaneous value of residing and working in market jr, vjrt , depends on the level of utility, cjrt ,
and amenities, Bjr

t ,8 as well as the continuation value of the option value of moving to a new market j′r′,
comprising the bilateral moving cost, the idiosyncratic benefit and the discounted expected continuation
value, βEvj

′r′

t+1 , where the expectation is taken over future preference shocks.
To allow for a parsimonious aggregation of individual decisions, I assume that ϵj

′r′

t follows a Gumbel
distribution with location parameter γ̄ and scale parameter γ̄ν, where γ̄ is the Euler-Mascheroni constant
and ν governs the dispersion of the idiosyncratic shock. Under the previous assumption, equation (3) can
be rewritten as:

V jr
t := Evjrt = log(cjrt ) + log(Bjr

t ) + ν log

 J∑
j′=1

R∑
r′=1

exp
(
βV j′r′

t+1 − χ
(jr)(j′r′)
t

)1/ν . (4)

The individual mobility decisions of workers determine the evolution of labor across markets,

Lj′r′

t+1 =

J∑
j=1

R∑
r=1

Ljr
t µ

(jr)(j′r′)
t , (5)

where the variable µ(jr)(j′r′)
t denotes the share of workers moving from market jr to j′r′. Due to the struc-

ture of the model, this variable adopts a gravity structure, so that markets with higher lifetime utility attract
more migrants. The parameter 1/ν can be interpreted as the migration elasticity, that is, the sensitivity of
migration shares to changes in lifetime utility, namely,

µ
(jr)(j′r′)
t =

exp
(
βV j′r′

t+1 − χ
(jr)(j′r′)
t

)1/ν
∑J

ȷ̃=1

∑R
r̃=1 exp

(
βV ȷ̃r̃

t+1 − χ
(jr)(ȷ̃r̃)
t

)1/ν . (6)

7The elasticity of substitution across goods, ∂ log(c(jr)(ȷ̃)t /c
(jr)(ȷ̂)
t )/∂ log(pȷ̃rt /p

ȷ̂r
t ) = ς , and the elasticity of relative demand for

two different goods with respect to utility, ∂ log(c(jr)(ȷ̃)t /c
(jr)(ȷ̂)
t )/∂ log(cjrt ) = ϑȷ̃ − ϑȷ̂, do not depend on the income level.

8In this paper, I assume that the only mechanism through which warming affects the workings of the economy is by distorting
productivities. Cruz and Rossi-Hansberg (2021) study the effect of temperature increases on amenities in a one-sector model.
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2.2 Landlords

In each region r, there is a unit mass of landlords who own the local factor, Hr, and rent it to the local firms
at the market price qrt . Landlords use their income, qrtHr, to purchase local goods that are valued according
to the same non-homothetic CES preferences as workers. Hence, the consumption share of good ȷ̃ by a
landlord in region r is given by,

s
(ȷ̃r)
t = γ ȷ̃

(
qrtH

r

pȷ̃rt

)ς−1

(crt )
ϑȷ̃

, (7)

where crt represents the utility level of the immobile landlord located in region r. Since landlords cannot
relocate to other regions, they face no dynamic decision.

2.3 Intermediate sector

The production component of the model follows the multi-sector model of Caliendo and Parro (2014) and
the spatial model of Caliendo et al. (2017). In each region r and sector j, there is a continuum of intermediate
firms, each producing a differentiated variety, indexed by its idiosyncratic productivity z. Average value
added productivity at the market level is represented as the product of an exogenous component, Ajr

t , and
an endogenous component, Ωj(T r

t ), varying according to the level of local temperature.
The production of intermediate varieties requires labor ljrt (z), land hjrt (z), energy ejrt (z) and materials

m
(ȷ̃r)(jr)
t (z) from all sectors ȷ̃ ∈ {1, · · · , J}, aggregated through a Cobb Douglas composite,

yjrt (z) = z
(
Ajr

t Ωj (T r
t )
)1−ωjr

(ljrt (z)α
L

hjrt (z)α
H

ejrt (z)α
E
)1−ωjr

 J∏
ȷ̃=1

m
(ȷ̃r)(jr)
t (z)ω

(ȷ̃r)(jr)

ωjr

− pe,jrt ejrt (z)

 .

(8)

The parameters αL, αH , αE denote the shares of labor, structures and energy in value added, respec-
tively, which are identical across markets and add up to one. The market-specific parameter ωjr represents
the share of value added in gross production in market jr and ω(ȷ̃r)(jr) is the share of of materials from
sector ȷ̃ in the production of sector j and region r. Since the production function displays Constant Returns
to Scale,

∑J
ȷ̃=1 ω

(ȷ̃r)(jr) = 1. The variable yjrt (z) denotes the production of goods after subtracting the cost
of generating energy, pe,jrt ejrt (z), where pe,jrt represents the market-specific price of energy and ejrt (z) is
expressed in terms of the intermediate varieties of the same market.9 This specification follows Nordhaus
and Boyer (2002).

Like in Cruz and Rossi-Hansberg (2021), the energy input is a CES composite between fossil fuels,
ef,jrt (z), and clean sources, ec,jrt (z),

ejrt (z) =
(
ηjref,jrt (z)

1−ζ
ζ + (1− ηjr)ec,jrt (z)

1−ζ
ζ

) ζ
1−ζ

. (9)

The parameter ζ represents the elasticity of substitution between energy inputs and ηjr controls the market-

9Alternatively, energy could be defined in terms of labor. However, such specification would require to explicitly quantify the
number of workers in the energy generation sector, which is a subset of manufacturing, mining and utilities.
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specific intensity of fossil fuels relative to clean sources.10 Firms can generate one unit of fossil fuels and
clean energy by paying the costs pf,jrt and pc,jrt , respectively. These prices are taken as given by the firms
and are given by,

pf,jrt =
h(Υt)

Af,jr
t

, pc,jrt =
1

Ac,jr
t

. (10)

In this formulation, Af,jr
t and Ac,jr

t are the exogenous productivity levels of energy generation. In
addition, the price of fossil fuels includes a component representing the increasing and convex cost of
extracting fossil fuels, h(·), in terms of the global cumulative use of this resource, Υt. According to this
specification, extracting fossil fuels is cheap when they are abundant, but the cost rises as the resource is
depleted. The evolution of cumulative extraction follows

Υt = Ef
t +Υt−1, with Ef

t =

J∑
j=1

R∑
r=1

∫
ef,jrt (z)dF (z). (11)

Assuming a competitive market for intermediate goods and that intermediate firms do not internalize
climate damages, the price, pjrt (z), of a given variety equals its unit cost, as displayed in equation (12). The
variable κjr

t denotes the cost of the input bundle required to produce one unit of intermediate variety in
market jr, pirt is the price of final good i used as materials in region r, and αW = 1 − αE(1 − ωjr) and Rjr

are time invariant constants,11

pjrt (z) =
κjr
t

z
(
Ajr

t Ωj(T r
t )
)1−ωjr ,

κjr
t := Rjr

((
wjr

t

)αL

(qrt )
αH
(
pe,jrt

)αE)(1−ωjr)/αW
 J∏

ȷ̃=1

(
pȷ̃rt

)ω(ȷ̃r)(jr)

ωjr/αW

. (12)

2.4 Final sector

In each sector j and region r, there is a firm that bundles a continuum of varieties (from home and abroad)
to produce final goods xjrt , according to the following technology,

xjrt =

(∫
xjrt (z)

ξ−1
ξ dF (z)

) ξ
ξ−1

, (13)

where xjrt (z) is the quantity of intermediate variety z demanded by the production of good j in region r

and ξ governs the elasticity of substitution among varieties.12 Since each variety z is purchased from the

10This energy modeling assumes that all the different energy uses, like transportation, are embedded in the production process.
Energy use of transportation comprises less than 2% of the global total electricity use in the year 2015, according to IEA (2019).

11More precisely, Rjr =

((
1− ωjr

) (
αL

)αL (
αH

)αH (
αE

)αE
)−(1−ωjr)/αW (

ω(jr)
∏J

ȷ̃=1

(
ω(ȷ̃r)(jr)

)ω(ȷ̃r)(jr)
)−ω(jr)/αW

.

12To account for damages on productivity due to global warming, these impacts must be accounted for in either the intermediate
or the final sector to avoid double counting. The model is much more parsimonious when considering the former specification.
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region with the lowest cost (inclusive of freight), the price paid for variety z, p̃jrt (z), can be defined as,

p̃jrt (z) = min
r̃

{
pjr̃t (z)κ

(jr̃)(jr)
t

}
(14)

Moving intermediate good j from region r̃ to r entails an iceberg bilateral cost κ(jr̃)(jr)t ≥ 1. To allow
for a parsimonious aggregation of individual decisions, I assume that z follows a Fréchet distribution with
shape parameter θ and scale parameter 1. The parameter θ governs the dispersion of productivity, such
that a smaller value implies a higher dispersion of productivity, a notion of comparative advantage. Given
the properties of the Fréchet distribution, with marginal distribution F (z) = exp(−z−θ), the price of the
sectoral aggregate good j in region r at period t is given by equation (15),

pjrt =

(∫
p̃jrt (z)1−ξdF (z)

) 1
1−ξ

= Γ̂

(
R∑

r̃=1

(
κjr̃
t κ

(jr̃)(jr)
t

)−θ (
Ajr̃

t Ωj(T r̃
t )
)θ(1−ωjr̃)

)−1/θ

, (15)

where Γ̂ is a constant.13 Since there are a continuum of varieties, the trade share π(jr̃)(jr)
t can be interpreted

as the fraction of varieties of good j that are purchased by region r from region r̃. Due to the structure of the
model, this variable adopts a gravity structure, so that markets with lower costs attract more transactions,
namely,

π
(jr̃)(jr)
t =

(
κjr̃
t κ

(jr̃)(jr)
t

)−θ (
Ajr̃

t Ωj(T r̃
t )
)θ(1−ωjr̃)

∑R
r̂=1

(
κjr̂
t κ

(jr̂)(jr)
t

)−θ (
Ajr̂

t Ωj(T r̂
t )
)θ(1−ωjr̂)

. (16)

2.5 Market Clearing

By employing the optimality conditions of the intermediate firms, labor market clearing in sector j and
region r and land market clearing in region r are given by,

wjr
t L

jr
t =

∫
wjr

t l
jr
t (z)dF (z) = (αL/αW )(1− ωjr)Y jr

t , (17)

qrtH
r =

J∑
j=1

∫
qrt h

jr
t (z)dF (z) =

J∑
j=1

(αH/αW )(1− ωjr)Y jr
t , (18)

where Y jr
t =

∫
pjrt (z)yjrt (z)dF (z) represents the total production of intermediate varieties in market jr. The

market clearing for intermediate varieties implies that the total production in market jr must be equal to
the global purchases of good j, including the iceberg trade costs,

Y jr
t =

R∑
r̃=1

π
(jr)(jr̃)
t Xjr̃

t . (19)

The variable Xjr̃
t = pjr̃t x

jr̃
t is the total expenditure on sector j goods in region r̃. Spending can be

devoted to: final consumption by workers in each economic sector, final consumption by landlords, and

13More precisely, Γ̂ = Γ(1 + (1− ξ)/θ)1/(1−ξ). Where Γ(·) is the Gamma function and the parameters must satisfy 1 + θ > ξ for
the Gamma function to be well defined.

9



use as materials across different industries.14 Hence,

Xjr
t =

J∑
ȷ̃=1

s
(ȷ̃r)(j)
t wȷ̃r

t L
ȷ̃r
t + sjrt

J∑
ȷ̃=1

(αH/αL)wȷ̃r
t L

ȷ̃r
t +

J∑
ȷ̃=1

(ω(jr)(ȷ̃r)ωȷ̃r/αW )

R∑
r̃=1

π
(ȷ̃r)(ȷ̃r̃)
t X ȷ̃r̃

t . (20)

2.6 Carbon Circulation and Climate

Global carbon dioxide emissions, Et, are defined as the sum of two components: the endogenous usage
of fossil fuels in the production process, Ef

t , and the exogenous carbon dioxide from forestry and land
use change, Ex

t .15 Carbon emissions enter into a circulation system between different carbon reservoirs. I
follow Golosov et al. (2014) and Hassler et al. (2016) and specify a reduced-form depreciation model of the
atmospheric carbon concentration,16

St+1 = Spre-ind +

t+1∑
ℓ=0

(1− δℓ)Et−ℓ,

where St+1 denotes the stock of carbon in the atmosphere at the beginning of period t+1, Spre-ind represents
the accumulation of carbon in the pre-industrial era (middle of eighteenth century) and (1− δℓ) denotes the
amount of carbon dioxide that is left in the atmosphere ℓ periods in the future and is parametrized as,17

(1− δℓ) = ψL + (1− ψL)ψ0(1− ψ)ℓ.

This carbon circulation process is equivalent to a recursive vector representation , where carbon stock is
posed as the sum of two components: a persistent, S1,t+1, and a slowly depreciating, S2,t+1, process.

St+1 = S1,t+1 + S2,t+1, (21)

S1,t+1 = S1,t + ψLEt, (22)

S2,t+1 = (1− ψ)S2,t + ψ0(1− ψL)Et. (23)

The accumulation of carbon in the atmosphere generates a positive net inflow of energy to the planet.
The relationship between carbon stock and the anthropogenic change in the Earth’s energy budget, or forc-
ing Ft+1, is well approximated by a logarithmic function (Arrhenius’ Greenhouse Law, Arrhenius (1896)),

Ft+1 = Fpre-ind + φ log2

(
St+1

Spre-ind

)
. (24)

The variable Fpre-ind denotes the forcing in the pre-industrial era and φ can be interpreted as the forcing

14Note that from the optimality conditions of the intermediate firms, the landlord’s income in region r can be rewritten as
qrtH

r =
∑J

ȷ̃=1(α
H/αL)wȷ̃r

t L
ȷ̃r
t and the cost of materials from sector j by firms in sector ȷ̃ and region r can be expressed as∫

pjrt m
(jr)(ȷ̃r)
t (z)dF (z) = (ω(jr)(ȷ̃r)ωȷ̃r/αW )Y ȷ̃r

t .

15This stand is based on the fact that CO2 from fossil fuel combustion represented more than 90% of the total emissions of carbon
dioxide in the year 2011 (IPCC, 2014).

16IPCC (2021) proposes a depreciation model of carbon circulation and temperature with a larger number of climate stocks. A
more accurate climate description comes at the cost of a larger state space.

17The parameter ψL denotes the share of carbon emitted into the atmosphere, (1 − ψ0) is the share of emissions exiting the
atmosphere immediately and ψ represents the depreciation rate of CO2 every period.
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increase when the carbon stock doubles relative to its pre-industrial level. The positive change in the Earth’s
energy budget warms up the atmospheric layer.18 Global temperature at the beginning of period t+1, Tt+1,
is proportional to forcing, namely,

Tt+1 = Tpre-ind +
λ

φ

(
Ft+1 + F x

t+1 − Fpre-ind
)
. (25)

where F x
t+1 denotes the exogenous forcing from greenhouse gases (GHG) other than carbon dioxide, and

λ is the climate sensitivity, which admits a similar interpretation to φ. Since the energy flow to the Earth
is unevenly spread over space, local temperature might evolve differently, depending on the geographic
position and natural attributes of each region.

I derive the evolution of local temperature at region r, T r
t+1, as a function of its global value, Tt+1. More

precisely, I employ a linear statistical downscaling to derive the relation between aggregate and disaggre-
gated variables,19

(
T r
t+1 − T r

t

)
= gr (Tt+1 − Tt) , (26)

where the coefficient gr quantifies the increase in local temperature in region r when global temperature
rises one degree Celsius.

2.7 Competitive Equilibrium

The endogenous state variables of the economy are the stock of carbon dioxide of both layers, S1,t, S2,t,
the cumulative extraction of carbon from the ground, Υt, and the distribution of population across mar-
kets, Lt = {Ljr

t }J,Rj=1,r=1. The exogenous state variables of the economy are the fundamental productiv-
ities, amenities, mobility and transport costs, Θt = (At, A

f
t , A

c
t , Bt, χt, κt) with (Ajr

t , A
f,jr
t , Ac,jr

t , Bjr
t ) =

{Ajr
t , A

f,jr
t , Ac,jr

t , Bjr
t }J,Rj=1,r=1, χt = {χ(jr)(j′r′)

t }J,J,R,R
j=1,j′=1,r=1,r′=1, κt = {κ(jr)(jr̃)t }J,R,R

j=1,r̃=1,r′=1, and the exoge-
nous flow variables are the non-fossil fuels CO2 emissions and the non-CO2 GHG forcing, Φt = (Ex

t , F
x
t ).

I define a competitive equilibrium following the terminology of Caliendo et al. (2019) and Caliendo et al.
(2021).

Definition 1. Given (Lt, S1,t, S2,t,Υt,Θt,Φt), a temporary competitive equilibrium is the set of variables Zt =

(qt, wt, p
e
t ,κt, pt, ct, Xt, πt, st), where qt = {qrt }Rr=1, (wt, p

e
t ,κt, pt, ct, Xt) = {wjr

t , p
e,jr
t ,κjr

t , p
jr
t , c

jr
t , X

jr
t }J,Rj=1,r=1,

πt = {π(jr)(jr̃)
t }J,R,R

j=1,r=1,r̃=1, st = {s(jr)(ȷ̃)t }J,J,Rj=1,ȷ̃=1,r=1, such that the optimality conditions for workers and land-
lords –equations (1) and (7)–, intermediate varieties –equation (12)–, and final goods –equations (15) and (16)– hold
and all markets clear –equations (17), (18) and (20).

Definition 2. Given (L0, S1,0, S2,0,Υ0, {Θt,Φt}∞t=0), a sequential competitive equilibrium is a sequence of {Lt,

Vt, µt, E
f
t , Et, S1,t, S2,t, St, Tt, T

r
t ,Υt, Zt}∞t=0, where Vt = {V jr

t }J,Rj,r=1, µt = {µ(jr)(j′r′)
t }J,J,R,R

j,j′,r,r′=1, that solves the
worker location decision –equations (4), (5) and (6)–, satisfies the energy and climate component –equations (11),
(21), (22), (23), (25) and (26)– and solves the temporary equilibrium at each t.

18There is no evidence on the existence of critical thresholds, also known as tipping points, beyond which the global climate system
reorganizes abruptly or irreversibly (IPCC, 2021). However, for some extreme climate events, like heat waves, droughts or forest fires,
there might be tipping points at the local scale.

19An alternative approach to modeling the heterogeneous world climate is to employ general circulation models, which describe
the movements of air and water that are the drivers of local temperature. These models rely on a extremely large number of state
variables.
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3 Solution of the Model

The solution of an integrated assessment model with this rich spatial, industrial and dynamic structure
requires pinning down a large number of fundamentals, which are not directly observable in the data. By
writing the equilibrium conditions in time differences, I perform the quantitative analysis without estimat-
ing the level of the fundamentals of the economy (Dekle et al., 2007).

To ease the exposition, define ẋt+1 = xt+1/xt as the proportional change of variable x from period t to t+
1. Given an allocation (wt, Lt, πt, st, ϱt, S1,t, S2,t,Υt), with ϱt = {ϱjrt }J,Rj=1,r=1 and ϱjrt = (pf,jrt ef,jrt )/(pf,jrt ef,jrt

+pc,jrt ec,jrt ) being the share of fossil fuel expenditure in the total energy use, a change of the state vari-
ables (L̇t+1, Ṡ1,t+1, Ṡ2,t+1, Υ̇t+1, Θ̇t+1), and a level of the exogenous climate variables Φt+1, the solution of
(ẇt+1, q̇t+1, ṗ

e
t+1, κ̇t+1, ṗt+1, u̇t+1, Xt+1, πt+1, st+1) satisfies the system of equations displayed in Appendix

B.2.
The solution of the temporary equilibrium in time differences resembles that of Caliendo et al. (2019)

with two main differences. First, the presence of non-homothetic preferences with constant elasticity of sub-
stitution implies that the consumption shares evolve according to their previous values, the time difference
of relative prices, and real income,

s
(jr)(ȷ̃)
t+1 = s

(jr)(ȷ̃)
t

(
ṗȷ̃rt+1

ẇjr
t+1

)1−ς (
u̇jrt+1

)ϑȷ̃

, with
J∑

ȷ̃=1

s
(jr)(ȷ̃)
t+1 = 1.

The log-linear structure of the expenditure shares makes the solution in time differences particularly tractable.
Moreover, it allows to decompose the temporal change of consumption shares into the component driven
by variations in relative prices and that driven by changes in real income. Second, the evolution on the use
of fossil fuels and clean energy depends on income, and the ratio of energy prices,

ėf,jrt+1 =

(
ẇjr

t+1L̇
jr
t+1

ṗf,jrt+1

)(
ṗf,jrt+1

ṗe,jrt+1

)1−ζ

, ėc,jrt+1 =

(
ẇjr

t+1L̇
jr
t+1

ṗc,jrt+1

)(
ṗc,jrt+1

ṗe,jrt+1

)1−ζ

.

In turn, the evolution of the energy composite price depends on the relative expenditure share of each
energy source, as well as the evolution of the energy prices,

ṗe,jrt+1 =

(
ϱjrt

(
ṗf,jrt+1

)1−ζ

+ (1− ϱjrt )
(
ṗc,jrt+1

)1−ζ
)1/(1−ζ)

.

To ensure that the economic and climate variables converge to a steady state, I impose that the se-
quence of changes in fundamentals converges to one in the long-run, limt→∞ Θ̇t+1 = 1, and the exoge-
nous emissions of carbon dioxide and the forcing of other greenhouse gases converge to zero over time,
limt→∞ Φt+1 = 0. Given the structure of the energy and climate model, the aforementioned assumptions
imply that global and local levels of temperature reach a steady state over time. Consequently, the damage
function on productivity evaluated at local temperature, Ωj(T r

t+1), also converges to a constant value over
time and the exogenous and endogenous variation of productivities converge to a constant value in the
long-run.

Given data on (w0, L0, π0, s0, ϱ0, µ−1, S1,0, S2,0,Υ0), and a converging sequence of fundamental and
exogenous climate variables {Θt+1,Φt+1}∞t=0, the sequence of {µt+1, Lt+1, υt+1, S1,t+1, S2,t+1, Tt+1, T

r
t+1,

Υt+1}∞t=0 solves the system of equations displayed in Appendix B.2, where υt = {exp(V jr
t )1/ν}J,Rj=1,r=1
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denotes a transformation of the value function. In addition to the equations characterizing the solution of
the sequential equilibrium in time differences displayed in Caliendo et al. (2019), this solution must satisfy
the energy and climate processes, given by equations (21), (22), (23), (26), and,

Tt+1 = Tt + λ log2

(
St+1

St

)
+
λ

φ

(
F x
t+1 − F x

t

)
.

I briefly describe the algorithm to solve the model in time differences. For a further explanation, refer
to Appendix B.6. First, I guess the path of CO2 emissions and the time difference of the value function,
{Ef

t+1, υ̇t+1}T
t=0. Then, I compute the evolution of local temperature and the temporal change of the damage

function, {T r
t+1, Ω̇

j(T r
t+1)}T

t=0, as well as the migration shares and the employment levels {µt, Lt+1}T
t=0.

Then, I solve the temporary equilibrium in time differences, period by period, and obtain the level of global
fossil fuel use and the time difference of utility, {Ef

t+1, u̇t+1}T
t=0. I solve backwards for the value function,

{υ̇t+1}T
t=0. Finally, if the difference between the guesses and the updated values for the path of carbon

dioxide emissions and the temporal change of the value function are greater than a pre-specified tolerance,
I iterate until convergence. Otherwise, the algorithm concludes.

4 Estimation of the Model

In this section, I construct initial data for consumption shares s(jr)(ȷ̃)0 , labor Ljr
0 , wages wjr

0 , trade shares
π
(jr)(jr̃)
0 , migration shares µ(jr)(j′r′)

−1 , fossil fuel and clean energy use (ef,jr0 , ec,jr0 ), initial carbon stocks
(S1,0, S2,0,Υ0) and local temperature T r

0 . I set the exogenous paths for non-fossil fuel CO2 emissions and
non-CO2 GHG forcing {Ex

t , F
x
t }∞t=0. In addition, I estimate the following parameters, elasticity of substitu-

tion across goods ς , good-specific income elasticity ϑȷ̃, factor shares in valued added (αL, αH , αE), share of
value added in gross output ωjr, materials share in non-value added ω(ȷ̃r)(jr), trade elasticity θ, discount
factor β, migration elasticity 1/ν, energy elasticity ζ, fossil fuel intensity ηjr, carbon circulation parameters
(ψL, ψ0, ψ), climate sensitivity λ and temperature downscaling factors gr. Finally, I parametrize the extrac-
tion cost function h(·) in terms of cumulative fossil fuel use and identify the sector-specific damage function
Ωj(·) in terms of local temperature.

4.1 Spatial and Industrial Resolution

The implementation of the solution method requires data of the initial period, which is considered as the
5-year window between 2011 and 2015. The industrial resolution of the model encompasses J = 6 eco-
nomic sectors, namely, agriculture, industry (manufacturing, mining and utilities), construction, trade and
transportation, finance, and government and other personal services.

The geographical resolution of the model considers R = 287 regions, which account for all countries
in the world for which migration stocks are available. From them, 124 regions are individual countries
and I group small countries into coarser geographical units (e.g., Caribbean Islands or Islands in Oceania).
In addition, I disaggregate the six largest countries, in a geographical, economic and demographic sense,
into their subnational units, since most of the commercial and immigration flows occur within, rather than
across borders, and since wide countries tend to display large differences in climate conditions and indus-
trial composition within their territory. More precisely, I decompose the United States into its 50 states and
the District of Columbia, Canada into its 13 provinces and territories, China into its 31 provinces, India into
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33 provinces, Brazil into its 26 states and the Federal District and Russia into 8 federal districts. Appendix
A.1 delves into the precise definition of the geographical units used.

4.2 Preferences

To estimate the elasticity of substitution across goods, ς , and the good-specific income elasticity, ϑȷ̃, I follow
the cross-country aggregate-level procedure of Comin et al. (2021). Specifically, I take the ratio of consump-
tion shares, displayed in equation (7), for two different goods in a region and take logarithms to obtain,20

log

(
sjrt

sȷ̃rt

)
= log

(
γj

γ ȷ̃

)
+ (1− ς) log

(
pjrt

pȷ̃rt

)
+ (ϑj − ϑȷ̃) log (crt ) + εjrt . (27)

In the baseline specification, I estimate the preference parameters from the patterns of structural change
in consumption. Unlike Comin et al. (2021), due to the presence of interregional trade, the relative sectoral
consumption expenditures are not equal to the relative sectoral employment shares, so the left-hand side
of equation (27) cannot be constructed using employment data. The first term in the right-hand side can
be interpreted as a sector fixed effect and εjrt is the estimating error. Hence, the estimation relies on the
within-region country variation of consumption shares, relative prices and real income to identify the price
and income elasticities. The identification assumption to obtain consistent estimates is that, for each region,
the shocks to relative prices and income are uncorrelated with the relative demand shock εjrt .

Data on current and constant consumption spending is taken from the OECD Final Consumption Expen-
diture of Households, which is an unbalanced panel ranging from 1950 to 2018 comprising country-level
data for 38 OECD and 22 non-OECD countries. Consumption prices are constructed as the ratio of current
to constant consumption spending and consumption shares are constructed based on nominal values. Data
on country-level real income, crt , is taken from the PWT database (Feenstra et al., 2015) and defined as the
per capita expenditure-side real GDP at chained PPP in U.S. dollars.

Column (1) of Table 1 displays the baseline results of the estimation, taking as reference the industry
sector and weighting observations by their population size. The price elasticity is less than unity, ς = 0.751,
implying that goods are complements. Relative to industry, the non-homotheticity parameter is signifi-
cantly lower for agriculture, of roughly the same size for construction and trade and transportation, and
significantly higher for finance and government and other services.21 In the parametrization of the model,
I normalize the income elasticity of the industry sector to one. Column (2) of Table 1 deems country-sector
fixed effects. Columns (3) and (4), and (5) and (6) replicate columns (1) and (2) considering GDP weights
and same weights, rather than population weights, across observations. Across the different specifications
studied, the results do not vary qualitatively.

After estimating the parameters of the utility function, I construct the consumption shares of each good
across all regions in the initial period. To do so, I supplement the OECD Final Consumption Expenditure
of Households with the World Bank Global Consumption Database (WB, 2021), which is a cross-sectional
database around the period 2000-2010, mostly focused on developing countries. In addition to providing

20For simplicity in the estimation of the preference parameters, I consider the region-aggregate consumption shares, rather than
the sector-region consumption shares. The smaller the difference in income elasticities across sectors, the closer the approximation.

21These results are in line with those found by Comin et al. (2021) when considering a 10-sector classification (Table XII) and
ignoring the presence of interregional trade. Goods are complements with a price elasticity of 0.1. The income elasticities of agriculture,
construction, trade, transportation, finance, and other services are -0.68, 0.03, 0.62, 0.44, 1.17 and 0.18, respectively.
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(1) (2) (3) (4) (5) (6)
1− ς 0.249 0.488*** -0.00618 0.499*** 0.468*** 0.407***

(0.355) (0.0784) (0.331) (0.0723) (0.140) (0.148)

ϑAGR − ϑIND -0.602*** -0.488*** -0.743*** -0.603*** -0.369*** -0.353***
(0.134) (0.141) (0.148) (0.171) (0.0533) (0.0289)

ϑCON − ϑIND 0.264** 0.265** 0.162 0.170 0.316*** 0.321***
(0.103) (0.126) (0.108) (0.155) (0.0526) (0.108)

ϑTRD − ϑIND 0.0696 0.159* -0.0180 0.0848 0.219*** 0.220***
(0.0860) (0.0821) (0.103) (0.0949) (0.0414) (0.0276)

ϑFIN − ϑIND 0.574*** 0.436*** 0.626*** 0.384*** 0.374*** 0.417***
(0.155) (0.0418) (0.178) (0.0474) (0.0883) (0.0655)

ϑOTH − ϑIND 0.644** 0.430*** 0.861** 0.447*** 0.255* 0.437***
(0.295) (0.0530) (0.338) (0.0405) (0.130) (0.0657)

N 4,620 4,620 4,620 4,620 4,620 4,620
R2 0.8230 0.9919 0.8463 0.9950 0.8234 0.9848
sector fe X X X
sector-country fe X X X
weight pop X X
weight GDP X X
no weight X X
Standard errors clustered at the country level.
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 1: Estimation of the elasticity of substitution and the good-specific income elasticity.

information for 90 countries, it also contains data at the subnational-level for Brazil and India.
To perform the subnational disaggregation for the remaining countries, I resort to official national statis-

tics and allocate the subnational information proportionally to preserve the national values.22 To input con-
sumption data for the 21 countries and the 8 subnational units of Russia with missing information, I pose
that consumption spending is a sector-specific log-linear function on GDP per capita and population at the
region-level.23 Then, I employ the estimated coefficients to construct the consumption shares.

Appendix A.2 describes the details of the datasets and plots the spatial distribution of per capita con-
sumption across goods and regions. In line with the estimation of the parameters in the utility function,
agricultural goods tend to be mostly consumed by developing countries and services by developed coun-
tries. With data on the average consumption shares of good ȷ̃ in region r, sȷ̃r0 , I construct the consumption
shares of good ȷ̃ of worker laboring in market jr, s(jr)(ȷ̃)0 , by targeting the values predicted by the log-linear
extrapolation on GDP per capita and population so that the average value across economic sectors matches
those observed in the data.

4.3 Technology

To calibrate the factor shares in value added, (αL, αH , αE), I use standard values from the literature and set
the share of labor to 65% (Tombe, 2015) and the share of energy to 4% (Golosov et al., 2014) for all regions

22For United States, the Consumer Spending by State from the Bureau of Economic Analysis. For Canada, the Detailed household
final consumption expenditure data, provincial and territorial from the Statistics of Canada. For China, the People’s Living Conditions
of the Statistical Yearbook of Regional Economy.

23In the estimation, the coefficient of determination is higher than 0.9, so the fit is considered to be successful.
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and sectors.24 Gollin (2002) finds little variation in labor’s aggregate share of value added across countries
and Gollin et al. (2014) argue that since a country’s employment share in agriculture does vary with income,
the labor share of value added across sectors must be close to equal.

The share of value added in gross production, ωjr, and the share of materials in non-value added,
ω(ȷ̃r)(jr), target the input output linkages observed in the EORA dataset (Lenzen et al., 2012, 2013), so that
market clearing conditions hold. The EORA dataset is a cross-section of national input output tables and
bilateral trade information across 187 countries and 26 sectors from 1990 to 2015.25 The global average
values of these parameters are displayed in Table 2. The importance and source of intermediate inputs
varies across sectors: industry has the highest share of materials in gross production and these goods are
largely used in different industries.

(1− ωj) ω(ȷ̃)(j)

AGR IND CON TRD FIN OTH
AGR 0.58 0.30 0.05 0.03 0.02 0.01 0.01
IND 0.31 0.43 0.70 0.58 0.29 0.17 0.33
CON 0.39 0.01 0.01 0.09 0.02 0.05 0.04
TRD 0.54 0.13 0.12 0.15 0.35 0.14 0.18
FIN 0.65 0.12 0.10 0.14 0.29 0.58 0.31

OTH 0.61 0.01 0.01 0.01 0.03 0.05 0.14

Table 2: Global average share of value added in gross production, (1 − ωj), and share of materials in non-
value added, ω(ȷ̃)(j).

To construct value added and employment for each sector, country, and subnational unit, I apply the
following procedure. First, I obtain country-level information on real GDP (at chained PPP in U.S. dollars)
and population from the Penn World Table version 10.0 (Feenstra et al., 2015). Then, I disaggregate value
added and employment across economic sectors by means of the Structural Change Database (Szirmai
and Foster-McGregor, 2017) and the Employment by Economic Activity Dataset of the International Labor
Organization.

With sector- and country-level information, I refine the data at the subnational-level using official na-
tional statistics, maintaining the same aggregate values.26 Appendix A.3 presents further details of the data
and plots the spatial distribution of per worker value added. On average, value added per worker in the
agriculture sector displays the lowest values relative to the other sectors. Although agriculture represents
a large share of production and employment in the African continent, those countries exhibit the lowest
value added per worker in the world. On the other extreme, value added per worker in the finance service
shows the highest values in the United States, Canada, Europe, Oceania, and Middle East. Coastal Brazil,

24Cruz and Rossi-Hansberg (2021) estimate the energy share in value added to be 3.3%, Hassler et al. (2019) 5.55% and Krusell and
Smith (2017) 6%.

25Other available sources to construct multi-region input output linkages are: World Input Output Database (Timmer et al., 2015b),
OECD Input Output Database, GTAP (Aguiar et al., 2019) and EXIOBASE (Tukker et al., 2009). Nevertheless, I choose the EORA
database due to its free access, its harmonized design across economic sectors, and its high regional resolution.

26Specifically, for United States, data is obtained from the GDP and Employment by State of the Bureau of Economic Analysis.
For Canada, data is taken from the GDP by industry, provinces and territory from the Statistics of Canada and employment from the
Census of 2016. For China, data is obtained from the Macro Economy and Labor Statistics Yearbooks. For India, value added is taken
from States of India and labor from the Employment and Unemployment Surveys. For Brazil, value added is taken from the Brazilian
Institute of Geography and Statistics and employment from the National Household Sample Survey Microdata. For Russia, Federal
State Statistics Service.
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northern India and mainland China exhibit low value added per worker in services relative to their national
averages.

4.4 Trade Flows

To construct sector-specific bilateral trade flows across countries and subnational units, I apply the follow-
ing procedure. First, I obtain data on international trade at the country-level from the EORA database.27

Then, I collect information on subnational intranational and international trade from an extensive set of
national statistics and custom data.

To illustrate the subnational decomposition, I use as example the United States. Intranational trade data
across two subnational units in the United States is obtained from the Commodity Flow Surveys of 2012
and 2017. I construct the trade flows between two states as the product of the domestic absorption from
the EORA database times the share of subnational trade relative to the national total from the Commodity
Flow Surveys. International trade data from one subnational unit in the United States to another country,
and vice versa, is obtained from the U.S. Census Bureau, 2011-2015. I allocate subnational trade data,
maintaining the country-level aggregates as in the EORA database.

I repeat the procedure for Canada, where the Trade Data Online displays information on exports and
imports of goods for each province in Canada relative to any other domestic province, country in the world
and state in the United States; for China, where the Commodity Trade Database provides information on
exports and imports of goods for each province in China relative to any domestic province and country
in the world; for Russia, where Rutherford and Tarr (2006) provides information on exports and imports
of goods and services for each federal district in Russia relative to any domestic federal district; and for
Brazil, where the International Commerce Statistics provides information on exports and imports of goods
for each state in Brazil relative to any other country in the world. A deeper discussion of the data sources
is presented in Appendix A.4.

To proxy the missing subnational trade flows, mainly for the service sectors and the subnational units
of India and the service sectors, I estimate,

X
(jr)(jr̃)
t =

(
V Ajr

t

)β1
(
V Ajr̃

t

)β2
(
GDPpcrt

)β3
(
GDPpcr̃t

)β4 (
Drr̃

)β5
exp

(
β6 · 1{r=r̃} + ιt + εrr̃t

)
. (28)

This specification depends on sector-specific value added and GDP per capita for both the importer and
exporter. In addition, I take into account the distance between two regions, Drr̃. To construct this measure,
I use the geographic location of more than 26,000 cities, construct the great circle distance between each pair
of cities and aggregate the city-level bilateral distances at the region-level using population weights, as in
Mayer and Zignago (2011). Finally, I incorporate a dichotomic variable capturing domestic trade, 1{r=r̃},
and a year fixed effect, ιt. I estimate equation (28) by Poisson Pseudo Maximum Likelihood (PPML) to
alleviate any bias from the omission of zeros in observed trade flows, as suggested by Santos Silva and
Tenreyro (2006), and employ the estimated coefficients to construct the missing trade flows.

Alternatively, I could have used country-level information from the EORA database, parametrize the
trade costs and construct the estimated trade shares across subnational units. However, this approach
imposes strong assumptions on the subnational trade flows. Hence, in order to replicate as closely as

27UN Comtrade presents information on international trade of goods, but excludes services sectors. To have a consistent measure
of trade across industries, I utilize the EORA database, which displays information for all the countries considered in the quantification
of this paper.
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possible the data, I exhaust the available subnational trade information. Finally, I set the trade elasticity to
be identical across sectors and equal to θ = 6 (Eaton and Kortum, 2002; Simonovska and Waugh, 2014).28

4.5 Migration Flows

Reliable data on international migration flows, to measure the movement of people between countries over
a given period, is scarce. In many countries, such data is not collected, as reporting systems are expensive,
and the ones that collect them have different definitions of what constitutes a migrant in terms of the length
or purpose of stay and might only consider formal migration movements. Therefore, missing and non-
comparable data preclude an accurate measurement of the global migration patterns.29

Due to this limitation, a branch of the demographic literature (Abel, 2013; Abel and Sander, 2014; Azose
and Raftery, 2019) has inferred migration flows from changes in bilateral migrant stock across periods.
Migration stocks quantify the number of persons residing in each country at a particular point in time
according to their place of birth. These measures can be collected, as they only require birthplace questions
from a country’s census or population survey.30 I extend the methodologies developed by this strand of the
literature to compute migration flows across countries, subnational units and working sectors, leading to a
migration flow matrix of more than 1,700 markets of origin and destination.

The first step is to assemble the migration stocks across countries and then disaggregate them across
subnational units. I mainly obtain the relation between country of residence and country of birth from the
United Nations (UN, 2020). The data spans the period 1990 to 2015 at a five-year frequency. I supplement
this dataset with the World Bank Bilateral Migration Stock (Özden et al., 2011) to enlarge the geographical
coverage.

Then, I decompose the migration stocks at the subnational-level by resorting to microdata files of coun-
try’s census or population survey for the years 1990, 1995, · · · , 2015. To illustrate the subnational decompo-
sition, consider the United States. Intra and international stock data for the United States comes from the
American Community Survey, which informs the number of persons residing in each state that were born
in each country of the world and each state of the United States. I allocate the subnational information,
keeping the country-level information as in the United Nations and World Bank database.

I repeat the procedure for Canada using the Census of Canada and the National Household Survey
Public Use Microdata, for China using the Census and Population Survey of China and Taiwan, for India
using the Census of India, for Russia using Census of Russia and for Brazil using the Census of Brazil and
the National Household Sample Survey Microdata. A deeper discussion of the data sources is presented in
Appendix A.5.

To proxy the missing subnational migration stocks, across two subnational units in different countries,
I estimate the gravity equation,

Lbr
t =

(
R∑

r′=1

Lbr′

t

)β1 ( R∑
b′=1

Lb′r
t

)β2
 R∑

r′=1,r′ ̸=b

Lbr′

t

β3
 R∑

b′=1,b′ ̸=r

Lb′r
t

β4

28Caliendo and Parro (2014) provide sector-specific trade elasticities for agriculture and industries, but not for services. The trade
elasticity in agriculture is larger than in industry.

29Although some projects seek to correct and harmonize migration flows for a subset of developed countries (Raymer et al., 2013),
its restrictive spatial coverage of developed countries prevents a global analysis of migration patterns.

30Abel and Cohen (2019) surveys and compares the accuracy of different methods to infer migration flows. The method developed
by Azose and Raftery (2019) outperforms the other procedures.
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)β5
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GDPpcrt

)β6
(
Dbr

)β7
exp

(
β8 · 1{b=r} + ιt + εbrt

)
. (29)

where Lbr
t denotes the number of person born in b residing in r. This specification depends on the popu-

lation in the place of birth, the place of residence, the number of persons residing in a different place, the
number of persons who were born in a different place, the GDP per capita of both the place of birth and
residence. In addition, I consider a measure of distance, Dbr, a dichotomic variable capturing the number
of stayers, 1{b=r}, and a year fixed effect, ιt. After estimating this equation by PPML and completing the
matrices of migration stocks, I decompose the place of residence into the market of residence by using the
share of workers in each industry from the ILO database.

Then, I extend the procedure outlined in Azose and Raftery (2019) to infer the migration flows from
changes in the migration stocks of two consecutive periods and demographic data. A brief description
of the methodology is presented below and a rigorous description is presented the Appendix B.5. First, I
control for deaths and births to guarantee that changes in the migration stocks reflect movements across
regions, rather than natural population changes. Thus, for each place of birth, the number of workers
in each market from the beginning and end of a 5-year period is known. In other words, I know the
marginal totals of the migration flows, but need to estimate the entries of the migration tables. Migration
flows are assumed to follow a Poisson process, where the mean is parametrized as the interaction of a
combination of market fixed effects. The solution of the Maximum Likelihood estimates only requires
information on marginal totals of the migration flows and an assumption of the number of stayers. Since
imposing minimum mobility might not be a realistic assumption, I consider a weighted average of the
estimates of minimum migration and a model that does not distinguish between migrants and stayers to
compute migration flows across more than 1,700 markets.

Figure 1 illustrates the mobility patterns at the global scale from 1995 to 2015. The left panel shows that
between 12% to 13% of households stay in the same region, but switch to a different sector. The spatial
mobility displays higher frictions, as 3% of households migrate to a different place but work in the same
sector, and only 1% move to both a new location and industry. The right plot depicts the mobility across
economic sectors. The large majority of agriculture workers stay in the same sector, but those who switch,
move to trade and transportation and industry. A minuscule number of workers switch from agriculture to
finance.

Figure 1: Global migration patterns.
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4.6 Migration Elasticity

The procedure to identify the migration elasticity is based on the work by Artuç and McLaren (2015) and
Caliendo et al. (2021). The estimation method relies on the migration shares, given by equation (6), and the
Bellman equation,

V jr
t = log(Bjr

t c
jr
t ) + βV jr

t+1 − χ
(jr)(jr)
t + Λjr

t , (30)

Λjr
t = ν log

 J∑
j′=1

R∑
r′=1

exp
(
β
(
V j′r′

t+1 − V jr
t+1

)
− χ

(jr)(j′r′)
t

)1/ν , (31)

where Λjr
t+1 denotes the option value of migration.31 This procedure comprises two steps: First, the Pois-

son regression stage, where the value functions V jr
t are estimated up to a constant. Second, the Bellman

equation stage, where the parameter ν is identified using the estimates of the previous step. Appendix B.3
delves into the derivation of the estimating equations. Hereinafter, I assume that the migration costs are
time-invariant, χ(jr)(j′r′)

t = χ(jr)(j′r′).
In the first stage, I manipulate the mass of workers migrating across markets and use the definition of

the option value of migration to arrive at the following equation,

µ
(jr)(j′r′)
t Ljr

t = exp

(
Dj′r′

t +Ojr
t − 1

ν
χ(jr)(j′r′)

)
+ ξ

(jr)(j′r′)
t , (32)

Dj′r′

t =
β

ν
(V j′r′

t+1 − V 11
t+1),

Ojr
t = −β

ν
(V jr

t+1 − V 11
t+1) + log

(
Ljr
t

)
− 1

ν
Λjr
t+1,

where Dj′r′

t is a destination-time fixed effect, Ojr
t is an origin-time fixed effect, χ(jr)(j′r′)/ν is a time-

invariant fixed effect, and ξ(jr)(j
′r′)

t is the sampling error. The terms Dj′r′

t and Ojr
t are separately identified,

since D11
t = 0. Equation (32) is estimated by PPML.

The second stage formulates the Bellman equation as an estimating equation using the destination- and
origin-time fixed effects, Dj′r′

t and Ojr
t , of the previous step. To construct the estimating equation, I employ

equation (30) of period t + 1 and substitute out the option value of migration Λjr
t+1 using the definition of

the destination- and origin-time fixed effects,

Djr
t + βOjr

t+1 − β log(Ljr
t+1) =

β

ν

(
βV 11

t+2 − V 11
t+1

)
− χ(jr)(jr) +

β

ν
log
(
Bjr

t+1u
jr
t+1

)
+ϖjr

t . (33)

In equation (33), the variable in the left-hand side is constructed with the results of the first stage and
data on population. The first term on the right-hand side is a time fixed effect, the second term is a time-
invariant market-specific fixed effect, and the last term is the regression residual.

The identification strategy can be understood as follows: The first stage uses the observed migration
flows to infer the pull, Djr

t , of each market at every period, which is a combination of the future relative
profitability of each market and the workers’ responsiveness, β/ν. With a panel of such pull estimates and
real income, in the second stage I estimate the extent to which the pull is affected by changes in real income.
This allows me to separate out the responsiveness β/ν.

31Since the idiosyncratic shocks are drawn according to a Gumbel distribution with mean zero and standard deviation proportional
to ν, Artuc et al. (2007) show that the option value of migration can be written as in equation (31).
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As discussed by Artuç et al. (2010), the disturbance term might be correlated with the regressor. Hence,
I employ the two-period lagged values of real income as instruments. In line with Nordhaus (2017), I set
a discount rate of 1.5% per year, implying a value of β = (0.985)5.32 Regarding the structure of amenities,
Bjr

t , I seek to be as general as possible and thus consider a flexible set of parametrizations, defined as
the combination of a global time-fixed effect, a market-specific time-invariant fixed effect, a sector-specific
linear time trend, and a region-specific linear time trend.

OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

1/ν 0.106*** 0.0565* 0.0735*** 0.0735*** 0.151*** 0.208*** 0.119*** 0.123
(0.0263) (0.0313) (0.0264) (0.0264) (0.0289) (0.0362) (0.0298) (0.0795)

Observations 6,884 6,884 6,884 6,884 6,876 6,876 6,876 6,876
R2 0.8864 0.8999 0.8885 0.8885 0.8868 0.9008 0.8890 0.9159
Bjr

t = BtB
jr X X

Bjr
t = BtB

jr exp(brt) X X
Bjr

t = BtB
jr exp(bjt) X X

Bjr
t = BtB

jr exp(bjrt) X X
Standard errors clustered by region in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 3: Sensitivity analysis for the migration elasticity 1/ν.

Table 3 shows the estimation of the migration elasticity for different parametrizations of the amenity
component and stances on real income. The instrumental approach suggests that the migration elasticity
lies between 0.12 and 0.21. I take 1/ν = 0.15 as my baseline estimate. Since I consider a larger discount
factor and a quinquennial window of time, rather than an annual window, it is natural to obtain lower
values for the migration elasticity relative to the literature (Caliendo et al., 2019, 2021),33 since over longer
periods of time most of the migration movements are returns to the place of birth and the influence of
income is smaller.

4.7 Energy

To construct sector-specific energy use of fossil fuels (carbon, oil and natural gas) and clean energy (nu-
clear energy, hydroelectricity and renewables) across countries and subnational units, I apply the following
procedure. First, I obtain country-level data on fossil fuels, measured in tons of CO2, from the Emissions
Database for Global Atmospheric Research (EDGAR) (Crippa et al., 2019) and IEA (2020a). I take country-
level data on clean energy from BP (2019). Then, I collect data from national statistics to decompose across
subnational units, keeping the aggregates as observed in the aforementioned sources.34 Appendix A.6

32Stern (2006) adds moral arguments in the determination of the discount rate: future generations should be valued as much as
current generations. Therefore, he chooses a very small discount rate of 0.1% per year, entailing a discount rate of β = (0.999)5.

33Caliendo et al. (2019) analyze the migration movements across industries and states within the United States. Caliendo et al.
(2021) study the migration movements across industries and countries within the European Union. Using a yearly discount factor
between 0.96 and 0.97, these studies obtain a migration elasticity of roughly 0.5.

34For United States, I employ data from the U.S. Energy Information Administration; for Canada, the Canada’s Official Greenhouse
Inventory and Electric Power Generation; for China, the Energy and Environmental Statistics Yearbook; for India, the Greenhouse
Gases Platform India; for Brazil, Greenhouse Gases Emission and Removal System. Data on clean energy for India and Brazil at the
subnational-level is not available. So, I use the same disaggregation as that for fossil fuels. For Russia, I take the information from
Xiao et al. (2021).
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delves into the details of the datasets and plots the spatial distribution of per capita energy use. Energy use
per capita is highly correlated with GDP per capita. Northern Africa, Middle East and North of China dis-
play a relatively large use of fossil fuels, due to the abundance of such resource. Scandinavia and Canada
are relatively more intensive in clean energy. Finally, I employ data from IEA (2020b) to allocate the total
energy use across economic sectors. Industry and trade and transportation are the sectors using most of the
energy, together they consume more than 90% of the total energy.35

The elasticity of substitution across energy types, ζ, is set to 1.6 (Popp, 2004).36 I follow Acemoglu et al.
(2019) and consider that the relative price between clean and dirty energy sources equals 1.15. Using this
parametrization and the optimality conditions between energy types, I derive the value of the fossil fuel
intensity in energy generation, ηjr. I parametrize the cost of extracting fossil fuels, h(·), in terms of the
cumulative use of this resource, as in Cruz and Rossi-Hansberg (2021). They employ data from Rogner
(1997) and Bauer et al. (2017) to derive this function. More precisely, they restrict the total stock of fossil
fuels in the ground to match the total carbon dioxide emissions in the next five centuries in the RCP 8.5
scenario from IPCC (2013).

4.8 Carbon Circulation and Climate

In order to model the carbon depreciation, I use the structure proposed in Golosov et al. (2014), where
ψL = 0.2 denotes the share of carbon emitted into the atmosphere, 1 − ψ0 = 1 − 0.4019 the share of
emissions exiting the atmosphere immediately, and ψ = 0.0115 the depreciation rate of CO2 every period.37

The forecast of the exogenous flow of carbon dioxide emissions, Ex
t , is taken from the RCP 8.5 scenario of

the RCP Database version 2.0. According to historical data on carbon dioxide emissions by Meinshausen
et al. (2011), the carbon stocks for the year 2000 take the values of S1,0 = 2, 572.38 GtCO2 and S2,0 = 460.62

GtCO2.38 I follow Nordhaus (2017) and set the climate sensitivity to λ = 3.39

Since I pursue a fine level of spatial disaggregation, I need to derive the evolution of local climate
based on global conditions. To this end, I employ the statistical downscaling method of Mitchell (2003),
implemented by Cruz and Rossi-Hansberg (2021). They estimate the local downscaling factor gr at a level of
resolution of 1◦×1◦ (around 110km by 110km in the Equator) based on geographical attributes of each cell.
On average, arctic regions warm 2.5 times faster than the global average, whereas tropic and inland areas
warm 66% slower than the global average. I aggregate these coefficients at the country- and subnational-
level using population weights from the Gridded Population of the World version 4 for the year 2000.

35More precisely, the shares of energy use across sectors are: industry (75.39%), trade and transportation (17.09%), agriculture
(3.39%), government and other services (2.45%), finance (0.87%) and construction (0.82%). Since industry encompasses mining, quar-
rying, manufacturing of oil and gas, this sector embodies the largest share of energy use.

36In the long-term, this elasticity of substitution might be larger, due to the reduction of the cost of clean energy storage and the
development of hybrid cars.

37The calibration of these parameters is based on the following facts: 20% of any emission pulse will stay in the atmosphere for
a thousand years, ψL = 0.2. The excess of carbon that does not stay in the atmosphere forever has a mean lifetime of 300 years,
(1 − ψ)60 = 0.5 with ψ = 0.0115. About half of the CO2 pulse to the atmosphere is removed after a time scale of 30 years, so
δ6 = 0.2 + 0.8ψ0(1− 0.0115)6 = 0.5 and ψ0 = 0.4019.

38The permanent layer is constructed as the sum of the carbon accumulation in the pre-industrial era plus a fraction ψL of the total
emissions up to the initial period. The slowly depreciating layer is residually calculated as the difference between the total carbon
stock in the atmosphere minus the permanent layer.

39Despite substantial research on this topic, climate sensitivity estimates have remained uncertain. IPCC (2021) estimates that the
climate sensitivity lies between 2 and 4.5 with more that 66% probability.
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Local temperature, T r
0 , for the initial period is constructed as in Dell et al. (2012). I obtain weather

data from the Terrestrial Air Temperature and Precipitation, Version 5.01 (Matsuura and Willmott, 2018).
This dataset provides gridded monthly temperature, measured in degrees Celsius at a spatial resolution of
0.5◦ × 0.5◦ degrees. I employ annual temperature and aggregate cells into countries and subnational units
using population weights.

4.9 Damage Function

To parametrize the sector-specific damage function, Ωj(·), I construct a long panel on value added produc-
tivity and use a fixed effect model to identify the causal effect of temperature on productivity. Finally, to
lend credibility of the main results, I perform a series of robustness exercises.

Following equation (8), measured value added productivity is defined as the ratio of real value added to
its inputs, namely labor, land and energy, which are aggregated in a Cobb Douglas fashion with Constant
Returns to Scale. In the description of the model, I consider land to be time-invariant at the region-level.
Due to the large time horizon over which global warming might operate, in this subsection I account for
changes of this production factor over time. Henceforth, I use a broader definition of land, as one which
adds capital accumulation.

In an open economy, measured productivity captures two forces: the fundamental productivity that
firms would have under autarky and the additional productivity arising from specialization or trade selec-
tion. As argued by Caliendo et al. (2017) and Uy et al. (2013), I can retrieve the fundamental productivity
using the measured productivity times the domestic absorption ratio raised to the inverse of the trade elas-
ticity. With the aforementioned definition, I construct a dataset of sector- and region-specific fundamental
value added productivity ranging from 1950 to 2017. Below, I briefly describe the data and the construction
of the variables. Further details are presented in Appendix A.8.40

Real value added and employment are mainly taken from the GGDC 10-sector (Timmer et al., 2015a) and
the OECD STAN database (OECD, 2020). To enlarge the spatial coverage, I supplement these datasets with
continent- and country-specific information, namely, EU KLEMS database (O’Mahony and Timmer, 2009),
Expanded Africa Sector Database (Buadi and Szirmai, 2018), Asian Productivity Organization database
(APO, 2020), Bureau of Economic Analysis, and Current Population Survey.

Capital stock is computed through the perpetual inventory method, as outlined in Inklaar et al. (2019).
Investment data, for all the countries in the world, is taken from the Capital Details of the PWT dataset.
Since capital stock provides a larger weight to long-lived assets relative to short-lived assets, I construct
capital services as a chain-type index of the services flows derived from different assets, where the weights
depends on the capital rental prices.

Energy is a CES composite between fossil fuels and clean sources. The methodology and datasets em-
ployed in its construction are the same as those described in Section 4.7. Trade data from Section 4.4 pro-
vides an accurate description of the cross-section for a short period of time. Thus, I employ such data for
the year 2015 and extrapolate to the past using the growth rates of the domestic absorption ratio from the

40An alternative approach to estimate the effect of temperature on productivity is to condition on observable data, invert the
economic model to retrieve the fundamental productivity and use weather fluctuations to identify the effect of temperature on pro-
ductivity, as performed in Rudik et al. (2021). Since the identification strategy emphasizes the variation over time within a given
market, the temporal dimension of the panel needs to be sufficiently large. The absence of data on trade and migration for a large
number of periods for all regions considered, particularly for developing countries, precludes the use of this approach in a worldwide
setting.
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Trade Details of the PWT.
The aforementioned datasets allow me to construct an unbalanced panel of value added productivity

ranging from 1950 to 2017 across the six economic sectors of interest. Due to data limitations, the panel
does not comprise all the geographical units considered in Section 4.1. However, since the panel considers
a large set of both developed and developing countries, I have information across the whole spectrum of
temperatures and income.

I identify the causal effect of temperature on fundamental value added productivity using a panel
fixed-effects model with weather variables entering the regression in a non-linear fashion. Specifically, I
parametrize the damage function as,

log(Ωj(T r
t )) = τ j1 · T r

t + τ j2 · (T r
t )

2
+ ρj1 · P r

t + ρj2 · (P r
t )

2
+ ιjr + ιjct + γjr1 · t+ εjrt , (34)

in terms of local temperature, T r
t , precipitation, P r

t , and a combination of fixed effects and time trends,
where r indexes regions and c continents, as defined in (Dell et al., 2012). In line with Burke et al. (2015),
productivity accounts for (i) time-invariant differences between markets, ιjr, like culture, history, natural
or geographical attributes;41 (ii) contemporaneous shocks at the sector- and continent-level, ιjct , such as
changes in prices or technological innovations; (iii) country-specific linear growth trends, γjr1 · t, which
might arise from slowly changing factors within a market, such as demographic shifts, trade liberalizations,
political institutions or economic policies;42 and (iv) the possibility for non-linear effects of local annual
average temperature and precipitation, where historical weather data are constructed with information
from Matsuura and Willmott (2018).43

More specifically, the damage function is an additive separable second order polynomial in temperature
and precipitation, implying heterogeneous effects of warming depending on the current level of tempera-
ture. As a robustness exercise, I consider higher order polynomials. For most of the temperature spectrum,
the results are robust. However, the estimation is sensitive at high temperatures, which are key in the pro-
jection of welfare losses when temperature rises beyond the current observations. Alternatively, I could
have employed a non-parametric approach as in Cruz and Rossi-Hansberg (2021) to infer the shape of the
damage function. Unfortunately, such methodology requires a huge number of observations to provide
accurate results.

Equation (35) denotes the marginal warming damage, which can be interpreted as the percentage change
on productivity when local temperature rises 1◦C,

∂ log(Ωj(T r
t ))

∂T r
t

= τ j1 + 2 · τ j2 · T r
t . (35)

I expect the intercept to be positive, τ j1 > 0, and the slope to be negative, τ j2 < 0, so that warmer tempera-
tures benefit cold regions, but harm hot locations. In this sense, the non-linear functional form suggests the
presence of an optimal temperature level, T j,∗, which occurs when the marginal damage equals zero.

41These fixed effects ensure that the model is estimated on deviations from market averages, rather than on cross-sectional differ-
ences in climate, which might correlate which average productivity. One of the main drawbacks of a cross-sectional estimation is the
omitted variable bias. A panel methodology solves this concern.

42Time fixed effects and linear trends account for potentially correlated trends in both temperature and productivity that are shared
across the sample.

43To the extent that temperature and precipitation are spatially correlated, the omission of precipitation in the estimation would
bias the coefficients on temperature, as the error term would be correlated with the regressor of interest.
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The combination of fixed effects, time trends and covariates defines the identification strategy: after
controlling for these factors, deviations in weather are as good as random (Hsiang, 2016). This identifi-
cation strategy has been extensively used after the pioneering work of Deschênes and Greenstone (2007).
I estimate equation (34) in one year time differences to account for any additional time invariant factors,
weight spatial units by population size and cluster the error term by country and year-continent, as in Dell
et al. (2012). Table 4 displays the results of the main specification across 6 economic sectors.

xxxxxx xAgriculturex xxxxIndustryxxx xConstruction Trade and xxFinancexxx Government
Transportation and Others

τ j1 2.998** 1.339 3.510** 2.238* 0.108 0.858
(1.268) (1.344) (1.451) (1.271) (1.384) (0.746)

τ j2 -0.143*** -0.0615 -0.144** -0.0909** 0.0163 -0.0340
(0.0368) (0.0472) (0.0602) (0.0447) (0.0529) (0.0302)

ρj1 0.132** 0.00507 0.0261 -0.00651 0.0820 0.0129
(0.0660) (0.0392) (0.0531) (0.0278) (0.0576) (0.0210)

ρj2 -0.000402** -0.0000552 -0.000140 -0.0000311 -0.000246* -0.0000753
(0.000176) (0.000114) (0.000153) (0.0000827) (0.000147) (0.0000706)

N 4,765 4,736 4,771 4,700 4,716 4,737
R2 0.315 0.441 0.371 0.477 0.334 0.487
T j,∗ 10.50 10.89 12.21 12.31 -3.32 12.61
Standard errors clustered by country and year-region, as defined by Dell et al. (2012), in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 4: Effect of temperature and precipitation on productivity across economic sectors.

Agriculture and construction stand out as the most climate sensitive sectors, since they display signifi-
cant and large coefficients. The left panel of Figure 2 shows the point estimates of the damage function of
temperature on productivity for the agriculture sector, its 90%, 95% and 99% confidence intervals, and the
effect for a selected number of countries, namely, Mongolia (MNG), Russia (RUS), Canada (CAN), United
States (USA), China (CHN), Brazil (BRA), India (IND), and Burkina Faso (BFA). For countries with yearly
average temperatures close to zero Celsius, like Mongolia, agricultural productivity is expected to increase
by roughly 3% when local temperature rises one degree Celsius. The beneficial effects of rising temper-
atures vanish when moving to warmer places, until they reach zero and eventually turn into damages.
Hence, an increase in local temperature of one degree Celsius in the hottest countries of the world, like
Burkina Faso, diminishes productivity by more than 6%.44 Agriculture is significantly affected by the level
of precipitation, although the coefficients on precipitation are an order of magnitude lower with respect to
those of temperature, as argued by Schlenker and Roberts (2009).

Relative to agriculture and construction, trade and transportation exhibit lower and significant climate
sensitivities. Relative to trade and transportation, industry displays smaller and non-significant responses
to warming.45 Lastly, finance, government and other services display no significant impact of temperature
on productivity, as illustrated in the right panel of Figure 2. Conforming with intuition, sectors mostly
performed outdoors undergo a higher climate sensitivity, as shown in Figure 3.46

44Confidence intervals widen at extreme temperatures, since there are fewer observations at these values.

45When decomposing the industry sector, manufacturing presents significant warming effects, in order of magnitude similar to
those of trade and transportation. In contrast, mining and utilities show no significant results.

46Lab experiments, surveyed by Seppanen et al. (2003), suggest that there is a general detriment in cognitive and physical perfor-
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Figure 2: Marginal damage function of temperature on agriculture and finance.
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Figure 3: Marginal damage at 0◦C and 30◦C across different sectors.

When estimating the damage function for the aggregate economy, the coefficients of interest take the
values of τ1 = 2.265 (1.127) and τ2 = −0.101 (0.0419), indicating that the optimal temperature, in a one-
sector economy, is 11.26◦C. This result is in line with the literature: Cruz and Rossi-Hansberg (2021) estimate
the bliss point for winter temperature to be 1.6◦C, with global winter temperature being roughly 10◦C
lower than its yearly average, Burke et al. (2015) find that country-level aggregate economic production is
maximized at 13◦C, and Nordhaus (2006) uses gridded data of output and finds an optimal temperature
between 8◦C and 14◦C.

Equation (34) imposes that the marginal damage function is specific for each sector, through the coef-
ficients (τ j1 , τ

j
2 ), and country, through the level of temperature. In this sense, such specification restricts

additional heterogeneity that might occur at the cross-country level. Moreover, such specification might
also abstracts away from the potential adaptation mechanisms, for instance, richer countries might be bet-
ter suited to attenuate the warming effects on productivity relative to poor countries. Henceforth, to verify
that the results are not driven by the choice of the functional form or the covariates employed, I perform
several robustness exercises to the main specification. Below I briefly describe the main results and Ap-
pendix A.8 delves into the estimation.

mance when temperatures exceeded certain thresholds.
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I test the sensitivity of the empirical results by interacting temperature with income and higher order
moments of the temperature distribution. Specifically, the 30-year rolling averages of real GDP, average
temperature, temperature range (difference between the maximum and minimum yearly temperature),
standard deviation and skewness of temperature. In addition, I incorporate additional covariates, like
lagged values of temperature, and extend the polynomial to a cubic one. To test for potential growth effects,
I apply the framework specified in Dell et al. (2012), that is, I consider that both the level and the growth
rate of productivity are functions of weather conditions. Across all these specifications, the coefficients
of interest, (τ j1 , τ

j
2 ), display similar values, the additional regressors display non significant results and the

power of the estimation tends to be lower. Consequently, my preferred specification is equation (34). Lastly,
I perform a placebo exercise to understand whether current productivity reacts to future (one-year ahead)
changes in temperature. The results are non significant.

Summarizing, global warming is expected to have heterogeneous effects on productivity across sec-
tors. Agriculture and construction are the most climate sensitive, with cold regions benefiting from this
phenomenon, while hot regions are hurt.

4.10 Productivities and Amenities

I estimate the time difference of the non-climatic component of productivity for each sector-region pair,
{Ȧt+1}T

t=0, so that for each market the growth rate of utility in the model targets the average growth rate of
real value added per capita observed in the data from 1990 to 2015. I set the time difference of productivity
in the generation of fossil fuels and clean energy, {Ȧf

t+1, Ȧ
c
t+1}T

t=0, to be constant across sectors and regions,
and project them so that the growth rate of global CO2 emissions and clean energy use in the model match
the average growth rates observed in the data from 1990 to 2015, respectively. I estimate the time differ-
ence of amenities for each sector-region pair, {Ḃt+1}T

t=0, so that the future migration flows are identical to
those observed in the data in the initial period. After 100 periods, both productivities and amenities remain
constant, so that the economy achieves a steady state. In the baseline estimation, I consider that the migra-
tion and commercial frictions take the same values as those observed in the initial period. Appendix A.9
discusses the estimation of these variables.

5 Results

The quantitative results of the model are organized as follows: First, I describe the evolution of climate
variables. Then, I discuss the heterogeneous welfare effects across regions and sectors. Finally, I evaluate
the extent of sectoral reallocation as a consequence of global warming.

5.1 Climate Variables

Figure 4 displays, in its left panel, the projections for CO2 emissions. For comparison, the plot also presents
the estimates in the two most pessimistic scenarios of IPCC (2013), namely, the Representative Consumer
Pathways 8.5 and 6.0. As for the carbon flow, it increases from 35 GtCO2 in 2015 throughout the next
century until it reaching a peak of roughly 112 GtCO2 per year. Afterwards, it decreases towards zero as a
consequence of the sharp increase in the extraction cost of fossil fuels.

The right panel shows the evolution of global temperature, expressed in degrees Celsius, relative to
its pre-industrial level. The higher level of carbon emissions rises the atmospheric concentration of CO2
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Figure 4: CO2 emissions and global temperature.

and, thus, the global temperature. Since carbon depreciates slowly, the effects of carbon dioxide in the
atmosphere are long lasting. By the end of the current century, global temperature is expected to be 4.2◦C
higher compared to its pre-industrial level. By the end of the next century, this value rises to 6.2◦C. This
result is in line with the most pessimistic scenario of IPCC (2013).

The aforementioned path for global temperature is projected to have differentiated effects over space on
local climate conditions. Figure 5 compares the levels of temperature for the years 2015 and 2215. In the
initial period, Central Africa experienced temperatures close to 30◦C, whereas the Northern provinces of
Canada and Russia faced temperatures between -10◦C and -3◦C. Two centuries later, most of the tropical
zones are expected to experience temperatures between 32◦C and 34◦C. On the other extreme, the coldest
places in the Earth are predicted to have temperatures above 0◦C.

Figure 5: Local temperature in 2015 and 2215.

5.2 Welfare

To assess the welfare consequences of the gradual increase in temperature, I consider a factual scenario
in which warming affects productivity, as described in Section 4.9, and a counterfactual scenario in which
the aforementioned fundamentals are not distorted, so that climate productivity remains at its initial level.
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Then, I define welfare losses in terms of the equivalent variation, Ejr, which gauges the willingness to pay
by workers in market jr in order to avoid global warming. Formally, the equivalent variation is defined as,

V ′jr
0 = log

(
Bjr

0 u
′jr
0

)
+ βV ′jr

1 − ν log
(
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′(jr)(jr)
0

)
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 , (36)

where the prime notation, x′t+1, refers to the counterfactual scenario.47 Henceforth, the welfare losses of
a worker laboring in sector j and region r in the initial period are given by the present discounted value
in real consumption and the option value, where the latter is summarized by the change in the fraction
of workers that do not reallocate and the standard deviation of the taste shocks. When warming makes a
market less suitable for residing and producing, the share of households that decide to stay in this region is
expected to decrease. Hence, migration acts as a mitigation mechanism against global warming, attenuating
the welfare losses.

To ease the exposition, define the hat notation, x̂t+1 = ẋ′t+1/ẋt+1, as the ratio of the counterfactual to the
factual time differences. The change in real consumption is implicitly defined by,

(
ŵjr

t+1

)1−ς

=

J∑
ȷ̃=1

s
(jr)(ȷ̃)
t+1

(
ŝ
(jr)(ȷ̃)
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)−1 (
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)1−ς (
ûjrt+1

)ϑȷ̃

. (37)

The change in real consumption does not only depend on the variations in wages and prices, but also on the
variations in consumption shares. When warming rises the consumption share of the most affected goods,
real consumption further declines. Hence, low income elasticity in agricultural goods relative to services
acts as a magnification mechanism, aggravating welfare losses. Finally, the change in the price of goods
depends on the change in trade openness, factor costs and fundamental productivity. Appendix B.4 further
discusses the derivation of the equivalent variation.

Figure 6 displays, in its right panel, the density function of the welfare losses across different markets,
where each observation is weighted by its population level. Positive values imply that workers are willing
to pay a positive fraction of income to avoid the pernicious effects of this phenomenon. On average, the
world is expected to undergo welfare losses of roughly one percent. However, there is a large degree of
heterogeneity: the most affected markets are projected to experience losses of around 15%, whereas the
most benefited markets might register welfare gains of more than 10%.

The left panel of Figure 6 illustrates the spatial distribution of average worker’s equivalent variation.48

In general, hot regions tend to be hurt, whereas cold regions tend to be benefited. However, the precise
spatial distribution depends on the evolution of relative productivity across neighboring regions. Such
features would be absent in a one-sector model.

Countries in the North of Africa, like Morocco, Algeria and Libya, experience small welfare losses or
even welfare gains compared to their neighboring partners in Central Africa, which undergo larger welfare

47The last equality of equation (36) follows from the fact that in the initial period all variables are identical in the factual and
counterfactual scenario, in particular, ujr0 = u′jr0 and µ(jr)(jr)0 = µ

′(jr)(jr)
0 .

48The average workers’ log-equivalent variation in a given region is defined as the weighted mean of log-equivalent variation
across working sectors, where the weights are given by the employment shares.
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Figure 6: Average workers’ welfare losses due to global warming.

damages. Since the former set of countries are relatively colder, they have a comparative advantage in
producing agriculture goods, which represents up to 40% of the total value added in the initial period.
Therefore, they harness in the comparative advantage to mitigate the damages experienced. A similar
pattern is observed in the south of the continent.49

African countries in the Atlantic coast, like Liberia, Guinea and Senegal, tend to experience smaller wel-
fare losses relative to their inland partners. Although these countries display similar levels of temperature
in the initial period, the former warms slower than the latter. Less heterogeneity in welfare is observed
in Europe and North America, as these regions display more uniform patterns of temperature and indus-
trial composition. As for the within country differences, India concentrates the largest welfare losses in its
northern provinces, since this area is mostly focused on the production of agricultural goods: around 40%
of total value added. Whereas in the central and southern provinces, the production of agricultural goods
accounts for roughly 20% of value added.

Within China, the coldest northern regions are projected to undergo welfare gains of roughly 5%. There
is a stark distinction between mainland and coastal China: the former is mainly agrarian, whereas the latter
is mainly devoted to services. Regarding the United States, the share of agriculture and construction is
very small in the economy (less than 2% in terms of value added). Thus, the spatial dispersion of welfare
damages is mostly driven by the trade and transportation sector, which accounts for roughly 25% of em-
ployment in the economy. This pattern highlights the relevance of a finer disaggregation within the service
sector.

5.3 Labor Reallocation

The heterogeneity in productivity distortions induces a reallocation of workers across regions and economic
sectors. Figure 7 compares the employment allocation in 2200 relative to the scenario with no warming. The
right panel displays the global comparison across the six economic sectors. At the global level, warming
induces almost 2% of workers to move into agriculture. Industry, construction, trade and transportation,
and government and other services experience slight reductions in employment levels, of roughly half

49Likewise, Australia and New Zealand are colder compared to their neighboring partners in the Pacific Ocean. Thus, these two
countries are able to lessen the welfare consequences of global warming.
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percent. Financial services are projected to experience a decline in employment of almost 2.5%.
These results reflect the horserace between the production and consumption specialization discussed in

Nath (2020). On the one hand, according to the patterns of comparative advantage, the declining agricul-
tural productivity in the tropical regions would push resources, particularly labor, away from these areas.
On the other hand, global warming is expected to make the world poorer, on average. Henceforth, lower
income implies a larger consumption share for agricultural goods and, consequently, more resources are
pulled into the more affected places to satisfy the larger demand. This shift in the consumption patterns
is reinforced by the complementarity across goods. A higher consumption price in agricultural goods re-
duces the quantity demanded of this good. The low value for the elasticity of substitution induces a small
quantity adjustment and thus the consumption patterns tilt towards the agricultural goods. On average,
consumption specialization dominates production specialization.

Figure 7: Labor reallocation in year 2200 due to global warming.

When evaluating the sectoral reallocation across spatial units, as illustrated in the left panel of Figure
7, the poorest regions are projected to experience increases in the number of agricultural workers. Such
regions, like India and China, coincide with the warmest places, the ones projected to register large declines
in income and thus the ones in which consumption specialization dominates production specialization. In
the coldest and richest areas, like the United States, Canada and Europe, the opposite pattern is observed:
income rises yield a larger consumption share in services and thus a lower demand for agricultural goods.
Correspondingly, production specialization dominates consumption specialization.

Sector Baseline
Agriculture -3.054
Industry -0.113
Construction -0.802
Trade and Transportation -0.405
Finance -0.727
Government and Others -0.294
Average -0.983

Table 5: Heterogeneous Welfare Losses across Working Sectors.

The reallocation of workers across economic sectors exemplifies the differentiated effects of global warm-
ing on workers, as presented in Table 5. On the one hand, workers in the agriculture sector are expected to
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undergo welfare losses three times larger than the average worker. Workers in industry, construction, and
trade and transportation exhibit welfare losses smaller than one percent. On the other hand, workers in
the finance and government and other services are projected to experience welfare gains of 0.7% and 0.3%,
respectively. These results are explained by the fact that most service workers are concentrated in rich and
cold countries, which benefit from the access to cheaper intermediate materials. Additionally, the decline
in employment in these sectors augments the value added per worker by alleviating the congestion in the
fixed factor.

6 Conclusions

This paper studies the heterogeneous effects of global warming across geographic locations and economic
sectors, and their influence in shaping the labor reallocation and the distribution of welfare losses across
markets. I develop a dynamic economic model with the patterns of structural transformation, an endoge-
nous evolution of climate, and spatially distinct labor markets facing varying exposure to warming dam-
ages on productivity. The model explicitly recognizes the role of non-homothetic preferences, to reproduce
the reallocation of economic activity across sectors when income grows, and trade of goods and migra-
tion of workers across regions and industries, to account for the costly ability of agents to adapt to this
phenomenon.

To underscore the vast heterogeneity of the world at a high level of resolution, I consider 6 economic
sectors and 287 regions, which comprise countries and subnational units in United States, Canada, Brazil,
India, China, and Russia. To measure workers’ mobility across regions and sectors, I collect data from a
large set of international and national censuses and population surveys, and extend methodologies devel-
oped by the demographic literature to construct bilateral migration flows across more than 1,700 markets.
To quantify the impact of temperature increases on productivity, I assemble a long panel of weather fluctu-
ations and value added productivity, and exploit the temporal variation in a fixed effect econometric model
to identify the non-linear effect of warming on productivity. Agriculture and construction stand out as the
most climate sensitive sectors, so that an increase of local temperature of 1◦C in the coldest countries of the
world rises productivity by 3%. But in the hottest countries, productivity declines by roughly 6%.

The simulation of the model suggests a huge degree of heterogeneity in terms of welfare losses. On
average, hot regions experience welfare losses, while cold places experience gains, but the exact spatial
distribution hinges on the industrial composition. Such heterogeneity of warming impacts leads to a mo-
bility response by workers. On aggregate, employment in agriculture rises, because the decline in average
productivity reduces household’s income, shifting the consumption patterns towards the agricultural sub-
sistence good. Moreover, the employment distribution varies over space, so that the hottest and poorest
countries of the world are the ones experiencing higher employment levels in agriculture. Consequently,
agricultural workers face the greatest welfare losses: three times larger than the average worker.

The proposed model can be used as a workhorse model to study a number of additional dimensions of
climate change. First, in order to have a more nuanced response of the spatial and industrial distribution
of economic activity to warming damages, in which some economic clusters might flourish or vanish, this
framework could be extended to incorporate an endogenous investment decision. Despite the challenges in
modeling the capital accumulation of forward-looking agents in a dynamic spatial model, Kleinman et al.
(2021) develop a tractable framework. Second, since global warming is a worldwide negative externality,
policy might alleviate some of its negative impacts. Some of the most discussed tools in the policy debate

32



are the use of carbon taxes and research subsidies to clean technology (Acemoglu et al., 2012, 2016). This
framework could be enhanced to allow endogenous investments across energy sources and characterize
the optimal market-specific tax on carbon dioxide emissions and subsidy on clean energy investment. Fi-
nally, global warming illustrates a particular dimension through which climate change might affect the
economy. In addition, there are a number of climate shocks with a large regional component, like heat
waves, droughts, storms, among others (Bakkensen and Barrage, 2019; Fried, 2019), affecting not only labor
productivity, but also the available stock of physical capital. My research agenda pursues to evaluate the
economic impacts of such extreme events.

Global warming presents a daunting challenge for humanity. A proper assessment of its consequences
requires modern micro-founded economic models that incorporate multiple forms of adaptation and the
rich spatial and industrial heterogeneity of the world. My hope is that this paper contributes to this effort.
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inputÄı̀output database. Ecological Economics, 68(7):1928–1937. Methodological Advancements in the
Footprint Analysis.

UN (2020). International migrant stock 2020. Technical report.

Uy, T., Yi, K.-M., and Zhang, J. (2013). Structural change in an open economy. Journal of Monetary Economics,
60(6):667–682.

WB (2021). Global consumption database.

Xiao, H., Zhao, W., Shan, Y., and Guan, D. (2021). Co2 emission accounts of russia’s constituent entities
2005–2019. Science.

Zhang, P., Deschenes, O., Meng, K., and Zhang, J. (2018). Temperature effects on productivity and factor re-
allocation: Evidence from a half million chinese manufacturing plants. Journal of Environmental Economics
and Management, 88:1–17.
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A Data

This Appendix delves into the description of the data and the construction of some variables.

A.1 Resolution

Aggregation of countries As for the country-level resolution, I mostly consider individual countries and
group small countries or countries with few information into coarser geographical units. The aggregation of
countries is the following: Albania and Macedonia; Austria and Liechtenstein; Belgium and Luxembourg;
Benin and Togo; Denmark and Faore Islands; Spain and Gibraltar; Ethiopia, Eritrea, Djibouti and Soma-
lia; France, Monaco and Andorra; Gabon, Equatorial Guinea and Sao Tome and Principe; Georgia and
Armenia; Guinea and Guinea-Bissau; Guatemala and Belize; El Salvador and Honduras; Indonesia and
Timor-Leste; Iraq, Kuwait and Syria; Italy, San Marino, Malta and Vatican; South Korea and North Korea;
Morocco and Western Sahara; Madagascar and Seychelles; Mali and Mauritania; Mozambique, Mayotte
and Comoros; Malaysia and Brunei; Nepal and Bhutan; Pakistan and Afghanistan; Romania and Moldova;
Saudi Arabia and Bahrain; Sudan and South Sudan; Gambia and Senegal; Montenegro, Serbia and Kosovo;
Libya and Tunisia; Burundi, Tanzania and Rwanda; Island of the Caribbean; Islands of Oceania; French
Guiana, Guyana and Suriname; South Africa, Swaziland and Lesotho.

United States The 51 subnational units considered are: Alabama, Alaska, Arizona, Arkansas, California,
Colorado, Connecticut, Delaware, District of Columbia, Florida, Georgia, Hawaii, Idaho, Illinois, Indiana,
Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi,
Missouri, Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Car-
olina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South Dakota,
Tennessee, Texas, Utah, Vermont, Virginia, Washington, West Virginia, Wisconsin and Wyoming.

Canada The 13 subnational units considered are: Alberta, British Columbia, Manitoba, New Brunswick,
Newfoundland and Labrador, Nova Scotia, Ontario, Prince Edward Island, Quebec, Saskatchewan, North-
west Territories, Nunavut and Yukon.50

China Taiwan is considered as an independent country. Due to lack of information, Macau and Hong
Kong are considered as part of China. More precisely, as part of the province of Guangdong. Thus, the
33 subnational units considered are: Anhui, Beijing, Chongqing, Fujian, Gansu, Guangdong, Guangxi,
Guizhou, Hainan, Hebei, Heilongjiang, Henan, Hubei, Hunan, Jiangsu, Jiangxi, Jilin, Liaoning, Inner Mon-
golia, Ningxia, Qinghai, Shaanxi, Shandong, Shanghai, Shanxi, Sichuan, Tianjin, Xinjiang, Tibet, Yunnan
and Zhejiang.

India The provinces of Dadra and Nagar Haveli and Daman and Diu are aggregated into Guajarat. The
province of Lakshadweep is aggregated into Kerala. Andhra Pradesh and Telagana are considered as two
different provinces, as they were officially separated in 2014. Thus, the 33 subnational units considered are:
Andaman and Nicobar Islands, Andhra Pradesh, Arunachal Pradesh, Assam, Bihar, Chandigarh, Chhat-
tisgarh, Delhi, Goa, Gujarat, Haryana, Himachal Pradesh, Jammu and Kashmir, Jharkhand, Karnataka,

50The first 10 subnational units are provinces and the las 3 are territories.
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Kerala, Madhya Pradesh, Maharashtra, Manipur, Meghalaya, Mizoram, Nagaland, Odisha, Puducherry,
Punjab, Rajasthan, Sikkim, Tamil Nadu, Telangana, Tripura, Uttar Pradesh, Uttarakhand and West Bengal.

Brazil The 27 subnational units considered are: Acre, Alagoas, Amapá, Amazonas, Bahia, Ceará, Distrito
Federal, Espı́rito Santo, Goiás, Maranhão, Mato Grosso, Mato Grosso do Sul, Minas Gerais, Pará, Paraı́ba,
Paraná, Pernambuco, Piauı́, Rio de Janeiro, Rio Grande do Norte, Rio Grande do Sul, Rondônia, Roraima,
Santa Catarina, São Paulo, Sergipe and Tocantins.

Russia Russia is composed by 85 federal subjects. However, for convenience of governing and opera-
tion, 8 federal district were implemented. Table 6 reflects the correspondence between federal subjects and
federal districts in Russia.

Federal District Federal Subjects
Central Belgorod Oblast, Bryansk Oblast, Vladimir Oblast, Voronezh Oblast, Ivanovo Oblast,

Kaluga Oblast, Kostroma Oblast, Kursk Oblast, Lipetsk Oblast, Moscow Oblast,
Oryol Oblast, Ryazan Oblast, Smolensk Oblast, Tambov Oblast, Tver Oblast, Tula
Oblast, Yaroslavl Oblast and Moscow

Northwestern Karelia Republic, Komi Republic, Arkhangelsk Oblast, Vologda Oblast, Kaliningrad
Oblast, Leningrad Oblast, Murmansk Oblast, Novgorod Oblast, Pskov Oblast, Saint
Petersburg and Nenets Autonomous Okrug

Southern Adygea Republic, Kalmykia Republic, Krasnodar Krai, Astrakhan Oblast, Volgograd
Oblast, Rostov Oblast Republic Crimea and Sevastopol

North Caucasus Dagestan Republic, Ingushetia Republic, Kabardino-Balkar Republic, Karachay-
Cherkess Republic, North Ossetia-Alania Republic, Chechen Republic and Stavropol
Krai

Volga Bashkortostan Republic, Mari El Republic, Mordovia Republic, Tatarstan Republic,
Udmurt Republic, Chuvash Republic, Kirov Oblast, Nizhny Novgorod Oblast, Oren-
burg Oblast, Penza Oblast, Perm Krai, Samara Oblast, Saratov Oblast and Ulyanovsk
Oblast

Ural Kurgan Oblast, Sverdlovsk Oblast, Tyumen Oblast, Chelyabinsk Oblast,
Khanty–Mansi Autonomous Okrug–Yugra and Yamalo-Nenets Autonomous
Okrug

Siberian Altai Republic, Tuva Republic, Khakassia Republic, Altai Krai, Krasnoyarsk Krai,
Irkutsk Oblast, Kemerovo Oblast, Novosibirsk Oblast, Omsk Oblast and Tomsk
Oblast

Far Eastern Buryatia Republic, Sakha (Yakutia) Republic, Primorsky Krai, Khabarovsk Krai,
Amur Oblast, Kamchatka Krai, Magadan Oblast, Sakhalin Oblast, Zabaykalsky Krai,
Jewish Autonomous Oblast and Chukotka Autonomous Okrug

Table 6: Correspondence between federal subjects and federal districts in Russia.

A.2 Preferences

OECD Final Consumption Expenditure from Households This dataset is an unbalanced panel ranging
from 1950 to 2018 comprising country-level data for 38 OECD and 22 non-OECD countries (Australia, Aus-
tria, Belgium, Brazil, Bulgaria, Cabo Verde, Canada, Chile, China, Colombia, Costa Rica, Croatia, Cyprus,
Czech Republic, Denmark, Estonia, Finland, Germany, France, Germany, Greece, Hong Kong, Hungary,
Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Korea, Latvia, Lithuania, Luxembourg, Madagascar,
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Malta, Mexico, Morocco, Netherlands, New Zealand, North Macedonia, Norway, Peru, Poland, Portu-
gal, Romania, Russia, Saudi Arabia, Slovak Republic, Slovenia, South Africa, Spain, Sweden, Switzerland,
Turkey, United Kingdom, United States and Zambia), according to the COICOP classification, https:
//stats.oecd.org/Index.aspx?DataSetCode=SNA TABLE5 ARCHIVE.

World Bank Global Consumption Database This dataset is a cross-section around the period 2000-2010,
mostly focused on developing countries: it provides information for 90 countries (Afghanistan, Albania, Ar-
menia, Azerbaijan, Bangladesh, Belarus, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Brazil, Bulgaria,
Burkina Faso, Burundi, Cabo Verde, Cambodia, Cameroon, Chad, China, Colombia, Congo Dem. Rep.,
Congo Rep., Cote d’Ivoire, Djibouti, Egypt, El Salvador, Ethiopia, Fiji, Gabon, Gambia, Ghana, Guatemala,
Guinea, Honduras, India, Indonesia, Iraq, Jamaica, Jordan, Kazakhstan, Kenya, Kyrgyz Republic, Lao
PDR, Latvia, Lesotho, Liberia, Lithuania, Macedonia, Madagascar, Malawi, Maldives, Mali, Mauritania,
Mauritius, Mexico, Moldova, Mongolia, Montenegro, Morocco, Mozambique, Namibia, Nepal, Nicaragua,
Niger, Nigeria, Pakistan, Papua New Guinea, Peru, Philippines, Romania, Russia, Rwanda, Sao Tome and
Principe, Senegal, Serbia, Sierra Leone, South Africa, Sri Lanka, Swaziland, Tajikistan, Tanzania, Thai-
land, Timor Leste, Togo, Turkey, Uganda, Ukraine, Vietnam, Yemen and Zambia) and subnational units
for Brazil, India and South Africa, according to the COICOP classification. If consumption data for a
country is present in the OECD and WB datasets, I prioritize the former given its larger horizon, https:
//datatopics.worldbank.org/consumption/AboutDatabase.

United States Consumption data for the United States is obtained from the Consumer Spending by State
of the Bureau of Economic Analysis. This dataset displays information for the 50 states and the District of
Columbia since 1997 according to the COICOP classification, https://www.bea.gov/data/consume
r-spending/state.

Canada Consumption data for Canada is obtained from the Detailed household final consumption ex-
penditure data, provincial and territorial of the Statistics of Canada. This dataset displays information
for the 13 provinces and territories since 2000 in U.S. dollars according to the COICOP classification,
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3610022501.

China Consumption data for China is obtained from the People’s Living Conditions of the Statistical
Yearbook of Regional Economy. I obtain access to this dataset through the Princeton University Library.
I define total consumption spending as the weighted sum of rural and urban consumption, where the
weights are the population in rural and urban areas. This dataset displays information for the 33 provinces
since 1999 in local currency according to the COICOP classification, https://library.princeton.ed
u/resource/40972.

Since some consumption goods in the COICOP classification are produced by more than one production
sector in the ISIC classification, I consider the crosswalk displayed in Table 7, where each cell denotes the
share of the consumption good produced by each sector. For each row, columns add up to one.

I compute the consumption expenditure of good ȷ̃ in sector j and in subnational unit r as the product of
the consumption expenditure of good ȷ̃ in sector j and in country c times the share of consumption expen-
diture of good ȷ̃ in subnational unit r relative to the national consumption expenditure of good ȷ̃. Finally,
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Figures 8, 9 and 10 illustrate the spatial distribution of per capita consumption across the six economic
sectors of interest.

Figure 8: Consumption per capita in agriculture and industry in 2015.

Figure 9: Consumption per capita in construction and trade and transport in 2015.

To input consumption data for the 21 countries and the 8 subnational units of Russia with missing
information, I pose that consumption spending for each sector and region is a log-linear equation on region-
level GDP per capita and population,

log
(
pjrt c

jr
t

)
= ♭j0 + ♭j1 log (GDPpc

r
t ) + ♭j2 log (L

r
t ) + ϵjrt . (38)

Then, I employ the estimated coefficients to supplement the market specific consumption expenditure
and construct the consumption shares. With data on the average consumption shares of good ȷ̃ in region
r, sȷ̃r0 , I construct the consumption shares of good ȷ̃ of a worker laboring in market jr, s(jr)(ȷ̃)0 , by targeting
the values predicted by the log-linear extrapolation, ŝ(jr)(ȷ̃)0 , on GDP per capita and population so that the
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Figure 10: Consumption per capita in finance and government and others in 2015.

average value across economic sectors matches those observed in the data:
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A.3 Value Added and Employment

Penn World Table I obtain data on GDP and population for every country in the world from the Penn
World Table version 10.0 (Feenstra et al., 2015). I employ this database, as it provides a consistent measure
of value added across countries. More precisely, GDP is defined as the cumulative expenditure-side real
GDP at chained PPP in U.S. dollars (rgdpe) from 2011 to 2015. Population levels (pop) are those of the year
2015, https://www.rug.nl/ggdc/productivity/pwt/?lang=en.

International Labor Organization (ILO) I disaggregate employment across working sectors by means of
the annual employment by sex and economic activity database from the ILO, which displays information
since 1991 for 276 countries in the world. I aggregate the employment of males and females for the year
2015 and compute the number of persons working in sector j in region r as the product of population from
PWT times the share of employment in market jr relative to the total economy from the ILO, https:
//ilostat.ilo.org/data/.

Structural Change Database (SCD) I disaggregate value added across working sectors by means of the
Structural Change Database (Szirmai and Foster-McGregor, 2017), which presents sectoral shares of GDP
from 1950 to 2016 for 156 countries with than more than one million inhabitants, across nine economic
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sectors. I average the value added shares over the period 2011-2015 and compute value added in sector j in
region r as the product of GDP from PWT times the share of GDP in market jr relative to the total economy
from the SCD, https://www.merit.unu.edu/themes/3-economic-development-innovation-
governance-and-institutions/structural-change-database-1950-2016/.

United States Value added and employment data across states for the United States are obtained from
GDP by State and Employment by State from the Bureau of Economic Analysis, respectively. Information is
displayed since 1997 according to the NAICS standard, https://www.bea.gov/data/gdp/gdp-state
and https://www.bea.gov/data/employment/employment-by-state.

Canada Value added data across provinces and territories for Canada is obtained from the Gross domestic
product (GDP) at basic prices, by industry, provinces and territories from the Statistics of Canada. This site
displays information since 2001 according to the NAICS standard in chained 2012 U.S. dollars, https:
//www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3610040202.

Employment data is obtained from the 2016 Census of Canada.51 Employed persons are those aged
15 years and over and usually relates to the establishment associated with the job the person held in the
reference week. However, if the person did not work during that week but had worked at some time since
January 1 of the prior year, the information relates to the job held longest during that period. Persons with
two or more jobs were to report the information for the job at which they worked the most hours. Industrial
classification follows the NAICS standard. In the Census, Northwest Territories, Nunavut and Yukon are
aggregated as a single unit. I disaggregate them using population weights, https://gsg.uottawa.ca
/data/teaching/soc/census16/user guide.pdf.

China Value added and employment data across states for China are taken from the Macro Economy and
Labor Statistics Yearbooks, respectively. I obtain access to this dataset through the Princeton University
Library. As for value added, the dataset comprises nine sectors, which agriculture is defined as primary
industry and trade and transportation as the sum of wholesale and retail, hotels and catering and transport,
storage and post. As for employment, the dataset only comprises three sectors, primary industry comprises
agriculture, secondary industry comprises industry and construction, and tertiary industry comprises trade
and transportation, finance and government and other services. I disaggregate those sectors using the
employment shares.

India Value added data across subnational units for India is taken from the States of India database, which
presents information for agriculture; forestry and logging; fishing; mining and quarrying; manufacturing;
electricity, gas and water supply; construction; trade, hotels, transport, storage, communication; financing,
insurance, real estate and business services; and community, social and personal services. The first three
sectors belong to agriculture and the next three to industry. I aggregate the provinces of Lakshadweep and
Dadra and Nagar Haveli and Daman and Diu into larger provinces, as there is incomplete information for
these units in this dataset.

Employment data across subnational units for India is taken from the Employment and Unemployment
Surveys. These surveys are performed every two years, perform information for the 35 states of the country

51The Employment by industry, annual, provinces and economic regions from the Statistics of Canada displays incomplete infor-
mation for the three territories of Canada.
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and consider 21 economic sectors after 2010 and 17 economic sectors before 2010, https://data.gov.i
n/catalog/employment-and-unemployment-national-sample-survey?filters%5Bfield c

atalog reference%5D=87713&format=json&offset=0&limit=6&sort%5Bcreated%5D=desc.

Russia Value added and employment data across states for Russia are taken from the Federal State Statis-
tics Service, which displays information at the federal district level according to the ISIC 3.1 classification,
https://eng.rosstat.gov.ru/folder/11335.

Brazil Value added data across states for Brazil is taken from the Brazilian Institute of Geography and
Statistics, which displays information since 2003 for 15 economic services: agriculture, industry (extrac-
tion industries; transformation industries; and electricity and gas), construction, trade and transportation
(trade; transport, storage and communications; hotels and restaurants; and information and communica-
tion), finance (financial activities; real estate; and professional activities) and government and other services
(public administration and defense; education and health; and other services), https://www.ibge.gov
.br/en/home-eng.html.

Employment data across states for Brazil is taken from the National Household Sample Survey Micro-
data. The mapping between the main activity codes in the survey and the six economic sectors of interest
are: agriculture (11-50), industry (100-410), construction (450), trade and transportation (500-640), finance
(650-740) and government and other services (750-998). Access to the information on Stata comes from
the package datazoom pnad developed by PUC-Rio, https://www.ibge.gov.br/en/statistics/
social/education/20620-summary-of-indicators-pnad2.html?=&t=o-que-e.

I compute the number of persons working in sector j in subnational unit r as the product of the number
of persons working in sector j in country c times the share of workers residing in working in sector j in
subnational unit r relative to the national number of workers in sector j. Finally, Figures 11, 12 and 13
illustrate the spatial distribution of per capita consumption across the six economic sectors of interest.

Figure 11: Value added per worker in agriculture and industry in 2015.

To estimate the share of value added in gross production, I target the global values observed in the
EORA database, subject to the feasibility constraint, given by the sum across economic sectors of equation
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Figure 12: Value added per worker in construction and trade and transport in 2015.

Figure 13: Value added per worker in finance and government and others in 2015.

(20), as shown below:
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where ℧jr = 1/(1 − ωjr) denotes a transformation of the share of value added in gross production, ℧̂j the
global average value observed in the EORA database and V Ajr

t the value added observed in the data. To
estimate the share of materials in non-value added, I target the input output linkages observed in the EORA
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database, ω̂(jr)(ȷ̃r), subject to the feasibility constraint (20):
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A.4 Trade Flows

EORA Database The EORA Database is a cross-section of national input output tables and bilateral trade
information across 187 countries and 26 sectors from 1990 to 2015. The mapping between this industrial
classification and the six economic sectors of interest is displayed in Table 8.52 It presents data for goods
and services sectors, but does not display a subnational disaggregation. I use information for the period
2011-2015.

U.S. Census Bureau I employ the USA Trade Online, https://usatrade.census.gov, to obtain
data on state exports and imports relative to all countries in the world at a monthly frequency since 2002.
Data for agriculture (111-114), mining (211-212) and manufacturing (311-339) is presented according to the
North American Industry Classification (NAICS) classifications.

Commodity Flow Survey The Commodity Flow Survey (CFS) captures data on shipment originating
from business establishments in the mining, manufacturing and wholesale and retail trade industries lo-
cated in the 50 states and the District of Columbia. The establishments are asked to provide shipment
information once in each quarter. The CFS is performed every five year and I use the information for the
year 2012.

Trade Data Online, Statistics Canada The Trade Data Online from the Statistics of Canada displays in-
formation on exports and imports between each province in Canada and each country in the world and
each state in the United States since 2002. Data for agriculture (111-115), mining (211-213), utilities (221)
and manufacturing (311-339) is presented according to the NAICS classifications.

China Customs The China Customs data is obtained from the EPS China Statistics, which presents data
on exports and imports at a quarterly frequency from 2012 to 2017. I obtain access to this dataset through
the Princeton University Library. Trade flows between each province in China and each country in the
world are displayed for agriculture (01-05), mining (06-12) and manufacturing (13-43), according to the
Industrial Classification for National Economic Activities (CSIC) Revision 2011 classification.53

52In the quantification of the model, I exclude the sector Re-Export and Re-Import.

53Data from 2009 to 2011 is displayed according to the CSIC Revision 2002 classification.
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Brazilian International Trade Statistics The Brazilian foreign trade statistics, http://comexstat.md
ic.gov.br/en/home, displays information on exports and imports at a monthly frequency since 1997
between each state in Brazil and each country in the world, according to the ISIC classification.

A.5 Migration Stocks and Demographic Data

United Nations UN displays estimates of the number of international migrants disaggregated by place of
birth, across 232 countries. Data comes from national statistics and mostly from population censuses. The
estimates are presented for every five years from 1990 to 2020, https://population.un.org/unmigr
ation/index sql.aspx.

The Population Division of the United Nations also displays information on country-level births and
deaths, https://population.un.org/wpp/.

World Bank Global matrices of bilateral migration stocks spanning the period 1960-2000, at a decade
frequency, disaggregated by gender and based primarily on the foreign-born concept are presented. Data
is constructed from hundreds of censuses and population registers.

United States I employ the one year American Community Survey for the years 2015, 2010, 2005 and 2000
and 5% state sample for 1990. The migration stock for 1995 is estimated as the average between 1990 and
2000. I consider all individuals, regardless of their age, sex or socioeconomic conditions.

For each year, I observe information by place of residence for each of the 50 states and the District of
Columbia. As for place of birth, the information presented for some countries tends to be scattered across
years. To circumvent this issue, I aggregate countries of birth into 21 coarser regions to have a consistent
path over time. More precisely, I use the relationship displayed in Table 9.

Information for state-level births and deaths are obtained from the National Vital Statistics System of the
National Center for Health Statistics, https://www.cdc.gov/nchs/data access/ftp data.htm.

Canada I employ the Census Public Use Microdata File on Individuals for the years 2016, 2006, 2001,
1996 and 1991 and the National Household Survey Public Use Microdata File on Individuals for the year
2011, representing 2.7% of the Canadian population. Information was collected from the Statistics Canada
Electronic File Transfer Service.

Information for province-level births and deaths are obtained from the Canadian Vital Statistics of the
Statistics of Canada, https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&Id=
1181459&dis=1 and https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&S

DDS=3233.

China I employ the Census of China for the years 2010, 2000 and 1990 and the Population Sampley Sur-
veys for the years 2015, 2005 and 1995. I obtain access to this dataset through the Princeton University
Library. Information is disaggregated by province or city of residence, province of registration and sex.

Information for province-level births and deaths are obtained from the Macro Economy Statistical Year-
book of China. I obtain access to this dataset through the Princeton University Library.
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India I employ the Census of India for the years 2011, 2001 and 1991.
Information for state-level births and deaths are obtained from the Government of India, Ministry of

Statistics, https://data.gov.in/catalog/crude-birth-rate-india?filters%5Bfield c

atalog reference%5D=86930&format=json&offset=0&limit=6&sort%5Bcreated%5D=desc

and https://data.gov.in/catalog/health-and-family-welfare-statistics-2019-

20?filters%5Bfield catalog reference%5D=6846674&format=json&offset=0&limit=6&s

ort%5Bcreated%5D=desc.

Russia I employ the Census of India for the years 2010 and 2002.

Brazil I employ Brazil National Household Sample Survey and access the information on Stata using
the package datazoom pnad developed by PUC-Rio.54

Information for state-level births and deaths are obtained from the System of Vital Statistics of the Brazil-
ian Institute of Geography and Statistics, https://www.ibge.gov.br/en/statistics/social/pop
ulation/16835-vital-statistics.html?=&t=o-que-e.

A.6 Energy

Emissions Database for Global Atmospheric Research (EDGAR) I employ the EDGAR v6.0 GHG database,
which provides information on the three main greenhouse gases (e.g., carbon dioxide, methane and nitrous
oxide) for almost 200 countries since 1971,55 https://edgar.jrc.ec.europa.eu/dataset ghg60.

IEA International Aviation and Shipping I obtain the disaggregation of International Aviation and Ship-
ping carbon dioxide emissions across 143 countries and 3 regions since 1971 from the IEA’s CO2 Emissions
from Fuel Combustion. Regions are disaggregated across countries using the CO2 shares derived from
EDGAR.

British Petroleum I employ the Statistical Review of World Energy to obtain information on clean energy
by source (nuclear energy, hydroelectricity and renewables) since 1971 for 79 countries and 12 regions. I
decompose regions into countries following the same proportions as in the use of fossil fuels. To make
comparable CO2 emissions and use of clean energy, I take the ratio of tons of carbon dioxide to tons of oil
equivalent to be 2.8466, https://www.bp.com/en/global/corporate/energy-economics/stat
istical-review-of-world-energy.html.

IEA Extended World Energy Balances I decompose the total energy use in each spatial unit across eco-
nomic sectors, employing the IEA Extended World Energy Balances. This table contains an extended set
of data on the energy consumption of different energy sources across across diverse final uses. More pre-
cisely, I compute the global use of energy and construct the share of energy used across sectors according

54See http://www.econ.puc-rio.br/datazoom/english/pnad.html.

55I employ this database, rather than information from British Petroleum, as the former displays a finer country-level disaggrega-
tion.
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to the final consumption.56 Finally, due to the lack of disaggregation for some countries and subnational
units, I use the global shares to decompose the energy use across all regions, https://www.oecd-
ilibrary.org/energy/data/iea-world-energy-statistics-and-balances/extended-

world-energy-balances data-00513-en.

United States I employ the State Energy Data System of the U.S. Energy Information Administration,
which displays yearly information since 1960. Energy sources are defined as coal, natural gas, petroleum,
nuclear and total renewable energy. The first three are fossil fuels and the last two are clean energy, https:
//www.eia.gov/totalenergy/data/annual/.

Canada As for fossil fuel use, I employ the Canada’s Official National Greenhouse Gas Inventory to con-
struct carbon dioxide emissions across provinces and territories. Data is provided since 1990 and it allows
a decomposition by economic sector, https://open.canada.ca/data/en/dataset/779c7bcf-
4982-47eb-af1b-a33618a05e5b.

As for clean energy use, I employ the electric power generation by type of electricity from the Statistics of
Canada. More specifically, hydraulic, nuclear, solar, tidal and wind are considered as clean energy sources,
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=2510001501.

China I employ the China Energy Statistical Yearbook to compute subnational energy production data. I
obtain access to this dataset through the Princeton University Library. As for fossil fuels, I consider infor-
mation on physical units of crude oil and coal production.57 As for clean energy, I consider information on
hydro and thermal power generation, both presented in kilowatt per hour.

India As for fossil fuels, I employ the GHG Platform – India to obtain information on state-level CO2

emissions since 2005. The database, http://www.ghgplatform-india.org, allows a decomposition
across economic sectors. As for clean energy, I employ the same subnational decomposition as in fossil
fuels.

Brazil As for fossil fuels, I employ the Greenhouse Gases Emission and Removal Emission System (SEEG),
http://seeg.eco.br/download, which provides data since 1990 across economic sectors and munici-
palities. As for clean energy, I employ the same subnational decomposition as in fossil fuels.

Russia I employ information from Xiao et al. (2021), which provides information on energy use of Rus-
sia’s 80 constituent units from 2010 to 2017 across economic sectors. The 80 constituent units are then
gathered into 8 federal subjects. As for fossil fuels, I consider the sum of crude oil, natural gas, oil, coal and
combustible indirect energy resources. As for clean energy, I consider thermal energy.

56Commercial and public services are allocated to utilities and services. Residential use is omitted in the disaggregation, as it
cannot be identified to a particular sector. I extend the definition of final consumption and allocate the transformation processes and
energy industry own use to the industry sector.

57For energy sources to be in the same units, I follow Golosov et al. (2014) and consider that one ton of oil and one ton of oil
generate 0.846 tons and 0.716 tons of carbon dioxide, respectively.
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Figure 14: Fossil fuel and clean energy use per capita in 2015.

Extraction Cost Function Following Cruz and Rossi-Hansberg (2021), I specify the extraction cost as the
following increasing and convex function,

h(Υt) =

(
h1

h2 + exp (−h3 (Υt − h4))

)
+

(
h5

h6 −Υt

)3

,

where h6 denotes the total reserves of carbon in the ground. The value of this parameter is set to the
cumulative flow of CO2 for the next five centuries according to in the RCP 8.5 scenario of the IPCC (2013),
that is, 19, 500 GtCO2. The remaining parameters target the extraction cost presented in Bauer et al. (2017).

A.7 Weather

I employ weather data from Matsuura and Willmott (2018), who provide gridded monthly data on tem-
perature and precipitation since 1900 to 2017 at a resolution of 0.5◦ × 0.5◦. To identify cells to countries,
I consider that each cell corresponds a single country: the one with most territory in it. Few exceptions
are performed for very small units, which otherwise would have no representation in the grid. I consider
that the weather variables of Hong Kong, Singapore, Malta, Bahrain and District of Columbia correspond
to that of the cell centered at (22.75, 114.25), (1.75, 103.75), (36.75, 14.75), (1.75, 103.75) and (38.75,−77.25),
respectively. Then, I aggregate gridded weather data at the region-level, employing population weights.
Gridded population for the year 2000 is obtained from the Gridded Population of the World version 4
(Doxsey-Whitfield et al., 2015).58

A.8 Damage Function

This subsection describes the data sources employed in the identification of the damage function of tem-
perature on productivity, as well as some robustness exercises.

58Alternatively, I could have aggregated cells into countries using crop or pasture weights from Ramankutty et al. (2008). In order
to have a consistent measure across economic sectors, I prefer the population weights.
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A.8.1 Value Added and Employment

Real value added, expressed in local currency, and employment, measured in number of persons, are
mainly taken from the GGDC 10-sector (Timmer et al., 2015a) and the OECD STAN database (OECD, 2020).
The former database provides information for 42 countries, mainly from Africa, Asia and Latin America;
whereas the latter for 37 countries, mainly from North America, Europe and Oceania. To enlarge the spatial
coverage, I supplement these datasets with continent-specific information, namely EU KLEMS database
(O’Mahony and Timmer, 2009), Expanded Africa Sector Database (Buadi and Szirmai, 2018) and Asian
Productivity Organization database (APO, 2020). I transform monetary units into U.S. dollars, using the
purchasing power parities of the PWT dataset (Feenstra et al., 2015).

Since the spatial patterns of productivity and temperature might be quite heterogeneous within large
countries, I disaggregate the United States into its 50 states and the District of Columbia, as in Colacito et al.
(2019). Data on sectoral value added at the subnational level comes from the Bureau of Economic Analysis:
from 1997 to 2020, the sectoral classification follows the North American Industry Classification System
and from 1977 to 1997 follows the Standard Industrial Classification. I employ the former period of time as
baseline and extrapolate to the past using the growth rates of the latter period of time. Since employment
at the sector-state level from the BEA comprise a narrow span of time (1990-2017), I construct this measure
using the Current Population Survey, which is the primary source of labor force statistics for the population
of the United States and provides data since 1962.

Table 10 illustrates the sectors considered, as well as their correspondence across different industrial
classifications, namely ISIC 3.1, ISIC 4.0, NAICS and SIC. Table 11 displays the countries and subnational
units considered in the analysis. When one country is present in more than one dataset, I prioritize the in-
formation as follows: Expanded Africa Sector, GGDC 10-sector, OECD STAN, EU KLEMS, Expanded Africa
Sector and Asian Productivity Organization.59 Below, I describe in more detail the datasets employed.

GGDC 10-sector The GGDC 10-Sector Database provides a long-run internationally comparable dataset
on sectoral productivity performance for 42 countries from Africa, Asia, and Latin America. Variables
covered in the data set are annual series of value added, output deflators, and persons employed for 10
broad sectors, according to the industrial classification ISIC 3.1, https://www.rug.nl/ggdc/struct
uralchange/previous-sector-database/10-sector-2014?lang=en.

OECD STAN The STAN database includes annual measures of output, value added and its components,
labor input, investment and capital stock, from 1970 onward. The latest version of the STAN Database
employs the industrial classification ISIC 4.0. This database comprise information for 37 countries, mainly
from North America, Europe and Oceania, https://www.oecd.org/sti/ind/stanstructuralana
lysisdatabase.htm.

EU KLEMS EU KLEMS comprise information for all individual EU-28 countries and United States. I em-
ploy the basic files, which contain information on value added and employment. The sectoral classification
follows ISIC 4.0, http://www.euklems.net.

59This decision is based on the length of the time dimension of these datasets.
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Expanded Africa Sector The Expanded Africa Sector Database presents data on value added at current
prices, value added at constant prices, price deflators and employment for 10 sectors of the economy, ac-
cording to the industrial classification ISIC 3.1, in 18 African economies, from 1960 until 2015, https:
//www.merit.unu.edu/themes/3-economic-development-innovation-governance-and-

institutions/expanded-africa-sector-database-easd-1960-2015/.

Asian Productivity Organization The APO Productivity Database provides information on employment
and value added by industry at current and constant prices. The industry classification follows ISIC 3.1,
https://www.apo-tokyo.org.

Bureau of Economic Analysis The Department of Commerce’s BEA displays annual data on value added
by industry and state from 1963 to 2017.60 Industry data from 1963 to 1997 are categorized using the SIC
codes, while data from 1997 to 2011 follow NAICS. I employ the former period of time as baseline and
extrapolate to the past using the growth rates of the latter period of time.

Current Population Survey Since employment at the sector-state level from the BEA comprise a narrow
span of time (1990-2017), I construct this measure using the Current Population Survey, which allows me
to construct a panel data from 1962 to 2017. More precisely, I consider all persons aged 15 or more, who
were currently employed or had previously worked during the current year and were looking for work. I
employ the industrial classification of the 1990 Census Bureau industrial classification system.

A.8.2 Capital

Using capital stocks to evaluate the contribution of capital is likely to be misleading, since long-lived assets,
like structures, get a very high weight compared to short-lived assets, like software. Capital services are
constructed based on capital stocks, which are computed through the perpetual inventory method, as in
Inklaar et al. (2019) and Edquist and Henrekson (2017).

Investment data at the country-level in current and constant prices is taken from the Capital Details of
PWT. Such database considers four types of assets: residential and non-residential structures, machinery
and equipment, transport equipment, and others.

As for investment data at the subnational-level in the United States, I follow Garofalo and Yamarik
(2002) consider that the state-level investment price is the same in the whole country and that the state-
level share of nominal investment equals the share of nominal value added.

To initialize the perpetual inventory method, I compute the initial value of the nominal capital stock, for

60Data from 1957 to 1962 can be obtained from the U.S Census Bureau Bicentennial Edition.
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each asset a and sector j and region r, as an asset-specific constant fraction κa of the nominal value added,61

P I,a,r
0 Ka,j,r

0 = κaPV A,j,r
0 V Aj,r

0 , κa =



2.2, a = Structures

0.3, a = Machinery

0.1, a = Equipment

0, a = Others

,

where the values for κa are taken from Table 4 of Inklaar and Timmer (2013). The real capital stock accumu-
lates due to investment and the non-depreciated part of the previous capital. Investment at the asset-sector
level is constructed as the asset-level investment observed in the data times the sectoral share of value
added.62 The depreciation rate, δa, is asset-specific to account for the fact that software depreciates faster
than structures,

Ka,j,r
t+1 =

(
V Aj,r

t

V Ar
t

)
Ia,rt + (1− δa)Ka,j,r

t , δa =



0.02, a = Structures

0.148, a = Machinery

0.189, a = Equipment

0.212, a = Others

,

where the values for this parameter are taken from Table 2 of Inklaar and Timmer (2013). Based on the
capital stocks and the asset- and country-specific investment prices, pI,a,r, provided by the Capital Details
of PWT, I compute the internal rate of return, irrj,rt , for each sector and region:

irrj,rt =
αHGDP r

t −
∑A

a=1 P
I,a,r
t δaKa,j,r

t +
∑A

a=1

(
P I,a,r
t − P I,a,r

t−1

)
Ka,j,r

t∑A
a=1 P

I,a,r
t−1 Ka,j,r

t

.

The first term, αHGDP r
t , denotes the the overall capital compensation in the economy, defined as the

share αH of Gross Domestic Product. The internal rate of return varies across industries, but not across
assets, as it is equalized across assets in a competitive market. The internal rate of return is then used to
derive the rental prices, qa,j,rt . The rental price equals the price at which the investor in indifferent between
buying and renting the capital good:

qa,j,rt = P I,a,r
t−1 irrj,rt + P I,a,r

t δa −
(
P I,a,r
t − P I,a,r

t−1

)
.

Finally, the change in capital services in industry j and region r can be obtained as shown below, where
the weight ṽa,jt is the two-period average share of compensation by each type of capital in the total value
of capital compensation for all industries.63 The initial level of capital services is the nominal value of the

61Alternatively, I could have used the steady-state relationship from the Solow growth model, Ka,j
0 = Ia,j/(ga + δa), where Ia,j

is the steady-state value of investment, ga is the growth rate of investment and δa is the depreciation rate. However, Inklaar and
Timmer (2013) argue that a linear relation between capital and output provides superior results.

62OECD provides investment data across countries, economic sectors and assets. Nevertheless, its limited geographical scope
precludes its use in this setting.

63To derive capital stocks, replace qa,j,rt Ka,j,r
t with P I,a,r

t Ka,j,r
t in the expression for va,j,rt .
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capital stock across assets for a given sector and region,

∆ log
(
Kj,r

t

)
=

A∑
a=1

ṽa,j,rt ∆ log
(
Ka,j,r

t

)
,

ṽa,j,rt = 0.5
(
va,j,rt + va,j,rt−1

)
,
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a=1 q

a,j,r
t Ka,j,r

t

A.8.3 Trade

Trade data comes from the Trade Details of PWT (Feenstra et al., 2015). More precisely, agricultural trade
flows correspond to food and beverages and manufacturing trade flows correspond to industrial supplies,
fuels and lubricants, capital goods, transport equipment and consumer goods. The remaining sectors are
considered as non-tradable.

A.8.4 Robustness

The main specification evaluating the impact of temperature on productivity, given by equation (34), con-
siders that the error term is clustered by country and year-continent. Table 12 defines continents, as in Dell
et al. (2012).

Tables 13 and 14 consider a finer disaggregation of the sectoral composition. Specifically, I decompose
industry into mining, manufacturing and utilities, and separate trade and transportation, and government
and other services. Within the industry sector, manufacturing displays significant warming effects, in order
of magnitude similar to those of trade and transportation.

Figure 15 displays, in its left panel, the point estimates of the damage function of precipitation on pro-
ductivity for the agriculture sector, its 90%, 95% and 99% confidence intervals, and the effect for a selected
number of countries, namely, Egypt (EGY), China (CHN), United States (USA), India (IND), Brazil (BRA),
Myanmar (MMR), Costa Rica (CRI), Fiji (FJI), and Bhutan (BTN). In its right panel, Figure 15 shows the
spatial pattern of precipitation in 2015, measured in log mm. Relative to temperature, the impacts of pre-
cipitation are one order of magnitude lower in this sector.

The baseline specification, given by equation (34), imposes that the marginal damage function of weather
on productivity is specific for each sector, through the coefficients (τ j1 , τ

j
2 , ρ

j
1, ρ

j
2), and country, through the

level of temperature. In this sense, such specification abstracts away from the potential adaptation mech-
anisms that might occur at the cross-country level. For instance, richer countries might be better suited
to attenuate the warming effects on productivity relative to poor countries. Analogously, historically hot
countries might be better suited to deal with temperature increases relative to temperate or cold countries.

Tables 15 an 16 test the sensitivity of the empirical results in agriculture to the covariates considered.
Regarding Table 15, column (1) displays the baseline results. Column (2) augments the set of covariates to
include an interaction between weather variables and the 30-year rolling average of income. Column (3)
adds the interaction between weather variables and the 30-year rolling average of temperature. Column (4)
considers that not only current temperature affects productivity, but also the temperature of the previous
year. All the interactions and additional covariates display non significant results. Column (5) performs a
placebo experiment to test whether current productivity reacts to changes of one-year-ahead temperature.
Those coefficients are non significant.
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Figure 15: Damage function of precipitation on agriculture and spatial pattern of precipitation in 2015.

Regarding Table 16, column (2) interacts the level of temperature with the 30-year rolling average of
the temperature range, defined as the difference between the maximum and minimum yearly temperature.
Columns (3) and (4) incorporate the interaction between weather variables and the 30-year rolling average
of the standard deviation and skewness of yearly temperature, respectively. All the interactions and ad-
ditional covariates display non significant results. Given the larger set of covariates, the estimation losses
some power, in particular in columns (2) and (3). Column (5) considers the baseline specification, but uses
a third order polynomial. The intercept of the damage function and the optimal level of temperature are
roughly the same.

Table 17 employs the main specification, but modifies the definition of the input factors. Column (1)
displays the baseline results. Column (2) replaces the real capital services with a measure of real capital
stock. A formal definition of the construction of such measures is presented in Appendix A.8.2. Column (3)
substitutes the number of persons engaged with the number of hours worked. The economy-wide number
of hours per worker is taken from the PWT database. Column (4) replaces the number of persons engaged
with a measure of human capital, constructed according to Caselli (2005). More specifically, human capital,
h, is a piece-wise function of the average years of schooling, s, which is obtained from PWT,

h = exp (ϕ(s)) , ϕ(s) =


0.13 if s ≤ 4

0.10 if 4 < s ≤ 8

0.07 if 8 < s

.

Column (5) replicates the baseline specification, omitting the observations from India and China. Table
18 modifies the time trends and observational weights of the main specifications. Column (2) deems a
quadratic market-specific time trend. Column (3) considers a linear trend at the sector- and continent-
level. Column (4) and (5) contemplate same weights and GDP weights, respectively. The results across the
different robustness exercises of Tables 17 and 18 are in line with the baseline results.

The baseline specification considers that changes in temperature only affect the level of productivity,
ignoring the potential effects on its growth rate. If temperature permanently affects income through growth
effects, this would have larger consequences for the projected long run effects of climate change, as small
changes in annual growth rates accumulated over long periods imply larger effects on production and
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consequently welfare.
To test for growth effects, I employ the framework specified in Dell et al. (2012) and is inspired by Bond

et al. (2010). To that end, I consider that both the level and the growth rate of productivity are functions of
weather conditions,

log
(
Ωj(T r

t )
)
=
(
τ j1 · T r

t + τ j2 · (T r
t )

2 + ρj1 · P r
t + ρj2 · (P r

t )
2
)
+ ιjr + ιjst + log

(
gΩ,jr
t

)
, (39)

∆ log
(
gΩ,jr
t

)
= ıjr + ϑj1 · T r

t + ϑj2 · (T r
t )

2 + ϱj1 · P r
t + ϱj2 · (P r

t )
2
. (40)

I differentiate equation (39) with respect to time and substitute the weather structure of equation (40),
to obtain the following structure for the growth rate of productivity:

∆ log
(
Ωj(T r

t )
)
= τ j1 ·∆T r

t + ϑj1 · T r
t + τ j2 ·∆(T r

t )
2
+ ϑj2 · (T r

t )
2

+ ρj1 ·∆P r
t + ϱj1 · P r

t + ρj2 ·∆(P r
t )

2
+ ϱj2 · (P r

t )
2
+ ιjr + ιjst (41)

Observe that equation (41) collapses to the time difference of equation (34) in the absence of growth
effects, ϑj1 = ϑj2 = ϱj1 = ϱj2 = 0. Table 19 shows the results of the estimation. The impact of temperature on
the levels on productivity construction are smaller than the results of the main specification, although with
a higher uncertainty. Since no significant effects occur in terms of the growth rate, the main specification
abstracts away from this channel.

A.9 Productivities and Amenities

Figures 16, 17 and 18 show the goodness of the fit of the market-specific productivity growth rate estima-
tion. The bubbles indicate the yearly growth rate of real value added in the data and the growth rate of
utility in the model in each sector-region pair. The bubbles size represent the market-specific employment.

Figure 16: Real value added per worker growth rate for agriculture and industry: estimation and data.
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Figure 17: Real value added per worker growth rate for construction and trade and transportation: estima-
tion and data.

Figure 18: Real value added per worker growth rate for finance and government and other services: esti-
mation and data.
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COICOP Sector Classification
Code Name AGR IND CON TRD FIN OTH
10 Food and non-alcoholic beverages 0.25 0.75 0 0 0 0
11 Food 0.25 0.75 0 0 0 0
12 Non-alcoholic beverages 0.25 0.75 0 0 0 0
20 Alcoholic beverages, tobacco and narcotics 0.25 0.75 0 0 0 0
21 Alcoholic beverages 0.25 0.75 0 0 0 0
22 Tobacco 0.25 0.75 0 0 0 0
23 Narcotics 0.25 0.75 0 0 0 0
30 Clothing and footwear 0 1 0 0 0 0
31 Clothing 0 1 0 0 0 0
32 Footwear 0 1 0 0 0 0
40 Housing, water, electricity, gas and other fuels 0 0.22 0.42 0 0.36 0
41 Actual rentals for housing 0 0 0.5 0 0.5 0
42 Imputed rentals for housing 0 0 0.5 0 0.5 0
43 Maintenance and repair of the dwelling 0 0 1 0 0 0
44 Water supply and miscellaneous dwelling services 0 0.5 0.5 0 0 0
45 Electricity, gas and other fuels 0 1 0 0 0 0
50 Furnishings, households equipment and routine maintenance 0 0.82 0 0.18 0 0
51 Furniture and furnishings, carpets and other floor coverings 0 1 0 0 0 0
52 Household textiles 0 1 0 0 0 0
53 Household appliances 0 1 0 0 0 0
54 Glassware, tableware and household utensils 0 1 0 0 0 0
55 Tools and equipment for house and garden 0 1 0 0 0 0
56 Goods and services for routine household maintenance 0 0.5 0 0.5 0 0
60 Health 0 0.33 0 0 0 0.67
61 Medical products, appliances and equipment 0 1 0 0 0 0
62 Out-patient services 0 0 0 0 0 1
63 Hospital services 0 0 0 0 0 1
70 Transport 0 0.27 0 0.73 0 0
71 Purchase of vehicles 0 1 0 0 0 0
72 Operation of personal transport equipment 0 0 0 1 0 0
73 Transport services 0 0 0 1 0 0
80 Communications 0 0.12 0 0.88 0 0
81 Postal services 0 0 0 1 0 0
82 Telephone and telefax equipment 0 1 0 0 0 0
83 Telephone and telefax services 0 0 0 1 0 0
90 Recreation and culture 0 0.58 0 0.06 0 0.35
91 Audio-visual, photographic and information processing equipment 0 1 0 0 0 0
92 Other major durables for recreation and culture 0 1 0 0 0 0
93 Other recreational items and equipment, gardens and pets 0 1 0 0 0 0
94 Recreational and cultural services 0 0 0 0 0 1
95 Newspapers, books and stationery 0 1 0 0 0 0
96 Package holidays 0 0 0 1 0 0
100 Education 0 0 0 0 0 1
101 Pre-primary and primary education 0 0 0 0 0 1
102 Secondary education 0 0 0 0 0 1
103 Post-secondary non-tertiary education 0 0 0 0 0 1
104 Tertiary education 0 0 0 0 0 1
105 Education not defined by level 0 0 0 0 0 1
110 Restaurants and hotels 0 0 0 1 0 0
111 Catering services 0 0 0 1 0 0
112 Accommodation services 0 0 0 1 0 0
120 Miscellaneous goods and services 0 0.28 0 0 0.52 0.2
121 Personal care 0 1 0 0 0 0
122 Prostitution 0 0 0 0 0 1
123 Personal effects n. e. c. 0 1 0 0 0 0
124 Social protection 0 0 0 0 0 1
125 Insurance 0 0 0 0 1 0
126 Financial services n. e. c. 0 0 0 0 1 0
127 Other services n. e. c. 0 0 0 0 0 1

Table 7: Crosswalk between COICOP and ISIC.
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Sector EORA industry classification
Agriculture Agriculture and fishing

Industry

Mining and quarrying, food and beverages, textiles and wearing apparel,
wood and paper, petroleum, chemical and non-metallic mineral prod-
ucts, metal products, electrical and machinery, transport equipment, other
manufacturing, recycling and electricity, gas and water

Construction Construction

Trade and transportation Maintenance and repair, wholesale trade, retail trade, hotels and restau-
rants, transport and post and telecommunications

Finance Financial intermediation and business activities

Government and others Public administration, education, health and other services, private house-
holds and others

Table 8: Mapping between industrial classification in the EORA database and the six sectors of interest.
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Region Countries

Central Africa Angola, Central African Republic, Cameroon, Chad, DR Congo, Congo, Gabon and
Sao Tome and Principe

Central America Belize, Costa Rica, Guatemala, Honduras, Nicaragua, Panama and El Salvador
Canada Canada

Caribbean
Aruba, Anguila, Netherlands Antilles, Antigua, Bahamas, Bermuda, Barbados,
Cuba, Curacao, Cayman Islands, Dominica, Dominican Republic, Haiti, Jamaica,
Trinidad and Tobago and British Virgin Islands

Central Europe
Austria, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Germany,
Hungary, Liechtenstein, Moldova, Montenegro, Poland, Romania, Serbia and Slove-
nia

China China, Hong Kong, Macao, Mongolia and Taiwan

Eastern Africa
Burundi, Cape Verde, Comoros, Djibouti, Eritrea, Ethiopia, Kenya, Madagascar,
Mauritius, Malawi, Mayotte, Mozambique, Reunion, Rwanda, Somalia, Seychelles,
Tanzania, Uganda, Zambia and Zimbabwe

India Afghanistan, Bangladesh, Bhutan, India, Iran, Maldives, Myanmar, Nepal, Sri Lanka
and Pakistan

Korea Japan, North Korea and South Korea

Middle East Bahrain, Cyprus, Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia,
Syria, Turkey, United Arab Emirates and Yemen

Mexico Mexico
North Africa Algeria, Egypt, Libya, Morocco, South Sudan, Sudan, Tunisia and Western Sahara
North Europe Denmark, Finland, Ireland, Iceland, Norway, Sweden and United Kingdom

Oceania Australia, Cook, Fiji, New Caledonia, New Zealand, Papua New Guinea, French
Polynesia, Samoa and Vanuatu

Russia Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgyzstan, Lithuania,
Latvia, Russia, Tajikistan, Turkmenistan, Ukraine and Uzbekistan

South Africa Botswana, Lesotho, Namibia, South Africa and Swaziland

South America Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Peru, Paraguay, Suri-
name, Uruguay and Venezuela

South East Asia Brunei, Indonesia, Cambodia, Laos, Malaysia, Philippines, Singapore, Thailand and
Viet Nam

South Europe Albania, Spain, Greece, Italy, Macedonia, Malta, Portugal, San Marino and Slovakia

Western Africa Benin, Burkina Faso, Cote d’Ivoire, Ghana, Guinea, Gambia, Liberia, Mali, Maurita-
nia, Niger, Nigeria, Senegal, Sierra Leone and Togo

Western Europe Andorra, Belgium, France, Luxembourg, Monaco, Netherlands and Switzerland

Table 9: Aggregation of countries into regions used in the American Community Survey.

Sector xxISIC 3.1xx xxISIC 4.0xx xxNAICSxx SIC Census 90
Agriculture A-B A 11 01-09 10-32
Mining C B 21 10-14 40-50
Manufacturing D C 31-33 20-39 100-392
Utilities E D-E 22 49 450-472
Construction F F 23 15-18 60
Trade G-H G,I 42, 44-45 72 50-59, 70, 75-76 500-691, 762-770
Transport I H,J 48-49, 51 40-48 400-442
Business J-K K-N 52-56 60-67, 73, 81 700-760, 841
Government L-N O-Q 61-62 80, 82, 91-97 812-870, 900-952
Others O-P R-U 71 72, 78-79, 83-89 761, 771-810, 871-893

Table 10: Sector classification across ISIC 3.0, ISIC 4.0, NAICS and SIC.
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Source Countries

GGDC 10-sector

Argentina (1950-2011), Bolivia (1950-2011), Botswana (1960-2011), Brazil (1950-2011),
Chile (1950-2012), China (1950-2012), Colombia (1950-2011), Costa Rica (1950-2011),
Denmark (1947-2011), Egypt (1947-2013), Ethiopia (1960-2012), France (1947-2011), Ger-
many (1950-2010), Ghana (1960-2011), Hong Kong (1950-2011), India (1950-2012), In-
donesia (1950-2012), Italy (1947-2011), Japan (1950-2012), Kenya (1960-2011), Malawi
(1960-2011), Malaysia (1950-2011), Mauritius (1960-2012), Mexico (1950-2012), Morocco
(1947-2012), Netherlands (1947-2011), Nigeria (1960-2011), Peru (1950-2011), Philip-
pines (1950-2012), Senegal (1960-2010), Singapore (1950-2012), South Africa (1960-
2011), South Korea (1950-2011), Spain (1947-2011), Sweden (1947-2011), Taiwan (1950-
2012), Tanzania (1960-2011), Thailand (1950-2011), UK (1947-2011), USA (1947-2011),
Venezuela (1950-2012) and Zambia (1960-2011)

OECD STAN

Australia (1970-2016), Austria (1976-2016), Belgium (1970-2016), Canada (1970-2016),
Chile (1986-2016), Costa Rica (1987-2017), Czech Republic (1970-2016), Denmark (1970-
2016), Estonia (1989-2016), Finland (1970-2016), France (1970-2016), Germany (1991-
2016), Greece (1970-2017), Hungary (1991-2016), Iceland (1973-2016), Ireland (1971-
2016), Israel (1995-2016), Italy (1970-2016), Japan (1970-2016), Latvia (1995-2017),
Lithuania (1995-2016), Luxembourg (1985-2016), Mexico (1970-2016), Netherlands
(1970-2016), New Zealand (1971-2016), Norway (1970-2017), Poland (1994-2017), Por-
tugal (1977-2017), Slovakia (1990-2017), Slovenia (1995-2016), South Korea (1970-2016),
Spain (1980-2017), Sweden (1970-2016), Switzerland (1970-2017), Turkey (1998-2016),
UK (1970-2017) and USA (1970-2017)

EU KLEMS

Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Fin-
land, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg,
Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, UK
and USA (1970-2015)

EASD
Botswana (1964-2015), Burkina Faso (1965-2015), Cameroon (1965-2015), Ethiopia
(1961-2015), Ghana (1960-2015), Kenya (1960-2016), Lesotho (1964-2015), Malawi (1960-
2015), Mauritius (1960-2016), Mozambique (1966-2015), Namibia (1960-2016), Nigeria
(1960-2015), Rwanda (1966-2016), Senegal (1960-2014), South Africa (1960-2016), Tan-
zania (1960-2015), Uganda (1952-2015) and Zambia (1960-2015)

APO

Australia, Bahrain, Bangladesh, Bhutan, Brunei, Cambodia, China, Fiji, Hong Kong,
India, Indonesia, Iran, Japan, Kuwait, Laos, Malaysia, Mongolia, Myanmar, Nepal,
Oman, Pakistan, Philippines, Qatar, Saudi Arabia, Singapore, South Korea, Sri Lanka,
Taiwan, Thailand, Turkey, UAE and Viet Nam (1970-2015)

BEA and CPS

Alabama, Alaska, Arizona, Arkansas, California, Colorado, Connecticut, Delaware,
District of Columbia, Florida, Georgia, Hawaii, Idaho, Illinois, Indiana, Iowa, Kansas,
Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Missis-
sippi, Missouri, Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mex-
ico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylva-
nia, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Utah, Vermont,
Virginia, Washington, West Virginia, Wisconsin and Wyoming (1977-2019)

Table 11: Data sources for value added and employment.
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Parent region Countries

Asia

Australia, Bahrain, Bangladesh, Bhutan, Brunei, Cambodia, China, Fiji,
Hong Kong, India, Indonesia, Iran, Japan, Kuwait, Laos, Malaysia, Mon-
golia, Myanmar, Nepal, New Zealand, Oman, Pakistan, Philippines,
Qatar, Saudi Arabia, Singapore, South Korea, Sri Lanka, Taiwan, Thai-
land, Turkey, United Arab Emirates and Viet Nam

Europe

Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Den-
mark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ire-
land, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzer-
land and United Kingdom

Latin America Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Mexico, Peru and
Venezuela

Middle East and North Africa Egypt, Israel, Morocco and Turkey
North America Canada and United States (50 states plus District of Columbia)

Subsaharan Africa
Botswana, Burkina Faso, Cameroon, Ethiopia, Ghana, Kenya, Lesotho,
Malawi, Mauritius, Mozambique, Namibia, Nigeria, Rwanda, Senegal,
South Africa, Tanzania, Uganda and Zambia

Table 12: Definition of continents and countries, as in Dell et al. (2012).

xAgriculturex xxxxMiningxxx Manufacturing xxUtilitiesxx xConstruction

τ j1 2.998** -2.536 2.171* -0.649 3.510**
(1.268) (1.641) (1.280) (1.965) (1.451)

τ j2 -0.143*** 0.0128 -0.0783* -0.0360 -0.144**
(0.0368) (0.0652) (0.0447) (0.0756) (0.0602)

ρj1 0.132** -0.0802 0.0176 -0.0612 0.0261
(0.0660) (0.0514) (0.0404) (0.0612) (0.0531)

ρj2 -0.000402** 0.000190 -0.000103 0.000112 -0.000140
(0.000176) (0.000140) (0.000117) (0.000172) (0.000153)

N 4,765 4,251 4,736 4,728 4,771
R2 0.315 0.263 0.455 0.291 0.371
T j,∗ 10.50 99.43 13.87 -9.03 12.21
Standard errors clustered by country and year-continent, as defined by Dell et al. (2012), in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 13: Effect of temperature on productivity for goods sectors.
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xxxxTradexxxx xxTransportxx xxxFinancexxx xxGovernmentx xxxxOthersxxx

τ j1 1.863 2.779* 0.108 1.128 0.758
(1.291) (1.653) (1.384) (1.113) (1.145)

τ j2 -0.0950** -0.0717 0.0163 -0.0473 -0.00601
(0.0469) (0.0467) (0.0529) (0.0466) (0.0400)

ρj1 -0.00763 -0.00128 0.0820 0.0108 0.0252
(0.0288) (0.0364) (0.0576) (0.0540) (0.0366)

ρj2 -0.0000335 -0.0000408 -0.000246* -0.0000893 -0.0000942
(0.0000833) (0.000114) (0.000147) (0.000178) (0.000110)

N 4,700 4,675 4,716 3,974 4,652
R2 0.442 0.402 0.334 0.553 0.406
T j,∗ 9.80 19.38 -3.32 11.92 63.01
Standard errors clustered by country and year-continent, as defined by Dell et al. (2012), in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 14: Effect of temperature on productivity for services sectors.
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Agriculture
xxxxxx xxBaselinexx xxAvg Tempxx xxxIncomexxx Lagged Temp xxLead Tempxx

τ j1 2.998** 3.411** 2.014 3.358*** -0.613
(1.268) (1.386) (1.377) (1.272) (1.196)

τ j2 -0.143*** -0.130*** -0.107*** -0.141*** 0.00816
(0.0368) (0.0426) (0.0371) (0.0418) (0.0474)

ρj1 0.132** 0.0196 0.0755* 0.142** -0.0869
(0.0660) (0.196) (0.0445) (0.0580) (0.0579)

ρj2 -0.000402** -0.000811 -0.000268** -0.000436*** 0.000228
(0.000176) (0.000825) (0.000130) (0.000158) (0.000151)

τTempAvg,j
1 0.143

(0.104)

τTempAvg,j
2 -0.00172

(0.00230)

ρTempAvg,j
1 0.00820

(0.0102)

ρTempAvg,j
2 0.00000672

(0.0000359)

τ Inc,j1 1.139
(1.250)

τ Inc,j2 -0.0176
(0.0319)

ρInc,j1 -0.0950*
(0.0519)

ρInc,j2 0.000232
(0.000146)

τLag,j
1 1.010

(1.395)

τLag,j
2 0.00343

(0.0428)

ρLag,j
1 0.0238

(0.0481)

ρLag,j
2 -0.0000733

(0.000135)
N 4,765 4,765 4,765 4,765 4,713
R2 0.3152 0.3221 0.3203 0.3168 0.3015
T j,∗ 10.50 13.13 9.38 11.93 37.55
Standard errors clustered by country and year-continent, as defined by Dell et al. (2012), in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 15: Effect of temperature on agricultural productivity. Robustness on covariates and placebo test.
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xxxxxx Agriculture
xxBaselinexx xTemp Rangex xxxTemp Stdxxx xxTemp Skewxx xTemp Cubicxx

τ j1 2.998** 4.183 4.787 3.260*** 2.872*
(1.268) (4.989) (4.977) (1.231) (1.683)

τ j2 -0.143*** -0.141 -0.154 -0.152*** -0.135
(0.0368) (0.107) (0.107) (0.0376) (0.134)

ρj1 0.132** -0.0385 -0.0489 0.0401 0.159
(0.0660) (0.113) (0.108) (0.0604) (0.109)

ρj2 -0.000402** 0.0000554 0.0000814 -0.000230 -0.000617
(0.000176) (0.000323) (0.000307) (0.000160) (0.000765)

τTempRange,j
1 -0.00891

(0.186)

τTempRange,j
2 -0.00184

(0.00380)

ρPrecRange,j
1 0.000784

(0.000668)

ρPrecRange,j
2 -0.00000213

(0.00000185)

τTempStd,j
1 -0.0967

(0.510)

τTempStd,j
2 -0.00354

(0.0106)

ρPrecStd,j
1 0.00244

(0.00190)

ρPrecStd,j
2 -0.00000662

(0.00000526)

τTempSkew,j
1 1.497

(2.099)

τTempSkew,j
2 -0.0557

(0.0819)

ρPrecSkew,j
1 0.113

(0.152)

ρPrecSkew,j
2 -0.0000875

(0.000402)

τ j3 -0.000150
(0.00287)

ρj3 0.000000495
(0.00000175)

N 4,765 4,765 4,765 4,765 4,765
R2 0.315 0.318 0.318 0.318 0.315
T j,∗ 10.50 14.80 15.51 10.70 10.49
Standard errors clustered by country and year-continent, as defined by Dell et al. (2012), in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 16: Effect of temperature on agricultural productivity. Robustness on covariates.
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Agriculture
xxxxxx xxBaselinexx Capital Stock Hours Worked Human Capital xNo CHN INDx

τ j1 2.998** 2.845** 2.994** 2.992** 2.101*
(1.268) (1.263) (1.277) (1.285) (1.081)

τ j2 -0.143*** -0.140*** -0.141*** -0.140*** -0.0963***
(0.0368) (0.0367) (0.0373) (0.0375) (0.0262)

ρj1 0.132** 0.130* 0.135** 0.137** 0.0192
(0.0660) (0.0663) (0.0669) (0.0667) (0.0340)

ρj2 -0.000402** -0.000397** -0.000412** -0.000419** -0.0000927
(0.000176) (0.000176) (0.000178) (0.000177) (0.0000941)

N 4,765 4,831 4,760 4,760 4,673
R2 0.3152 0.3118 0.3155 0.3163 0.2314
T j,∗ 10.50 10.19 10.61 10.66 10.91
Standard errors clustered by country and year-continent, as defined by Dell et al. (2012), in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 17: Effect of temperature on agricultural productivity. Robustness on definition of input factors.

Agriculture

xxxxxx xxBaselinexx γjr1 t+ γjr2 t
2 xxxxγjs1 txxxx Same Weightx xWeight GDPx

τ j1 2.998** 3.020** 2.947** 2.542* 2.918**
(1.268) (1.278) (1.259) (1.288) (1.181)

τ j2 -0.143*** -0.141*** -0.141*** -0.0952*** -0.111***
(0.0368) (0.0365) (0.0362) (0.0336) (0.0309)

ρj1 0.132** 0.134** 0.132** 0.0572** 0.0563
(0.0660) (0.0674) (0.0660) (0.0287) (0.0551)

ρj2 -0.000402** -0.000408** -0.000403** -0.000118 -0.000236
(0.000176) (0.000178) (0.000175) (0.0000750) (0.000156)

N 4,765 4,765 4,765 4,765 4,765
R2 0.3152 0.3272 0.3099 0.1828 0.2443
T j,∗ 10.50 10.69 10.45 13.35 13.18
Standard errors clustered by country and year-continent, as defined by Dell et al. (2012), in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 18: Effect of temperature on agricultural productivity. Robustness on time trends and observational
weights.
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xAgriculturex xxxxIndustryxxx xConstruction Trade and xxxFinancexxx Government
Transportation and Others

τ j1 1.674 1.672 2.615* 2.357* 0.500 -0.0724
(1.395) (1.413) (1.466) (1.309) (1.602) (0.826)

τ j2 -0.134*** -0.0618 -0.0858 -0.0819** 0.0502 0.00465
(0.0394) (0.0410) (0.0525) (0.0371) (0.0534) (0.0227)

ϑj1 2.528 -1.032 1.306 -0.458 -0.946 1.754
(1.917) (2.296) (2.912) (2.379) (2.883) (2.101)

ϑj2 -0.0142 0.0148 -0.0912 -0.00839 -0.0582 -0.0713
(0.0523) (0.0621) (0.0848) (0.0680) (0.0940) (0.0628)

ρj1 0.121* -0.0464 -0.0596 -0.0404 0.0678 0.0178
(0.0681) (0.0523) (0.0759) (0.0281) (0.0625) (0.0232)

ρj2 -0.000382** 0.0000271 0.0000336 0.0000270 -0.000249* -0.000116
(0.000184) (0.000144) (0.000227) (0.0000825) (0.000141) (0.0000856)

ϱj1 0.0162 0.0987 0.172 0.0671 0.0381 -0.00451
(0.0373) (0.106) (0.127) (0.0420) (0.0828) (0.0435)

ϱj2 -0.0000178 -0.000150 -0.000337 -0.000111 -0.0000169 0.0000713
(0.000113) (0.000285) (0.000366) (0.000126) (0.000246) (0.000138)

N 4,765 4,736 4,771 4,700 4,716 4,737
R2 0.318 0.448 0.385 0.483 0.341 0.490
T ∗,Level 6.27 13.54 15.24 14.40 -4.98 7.79
T ∗,Growth 89.31 34.80 7.16 -27.25 -8.13 12.30
Standard errors clustered by country and year-region, as defined by Dell et al. (2012), in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 19: Effect of temperature on productivity levels and growth rates across economic sectors.
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B Solution of the Model

This Appendix derives the solution of the model in levels and time differences, discusses in detail the
procedure to construct migration flows and outlines the numerical algorithm to solve the model.

B.1 Solution of the Model

Worker’s Cost Minimization Workers minimize expenditure subject to an utility level, implicitly defined
as shown below,

wjr
t = min

J∑
ȷ̃=1

pȷ̃rt c
(jr)(ȷ̃)
t

st

J∑
ȷ̃=1

(
γ ȷ̃
) 1

ς

(
cjrt

)−ϑȷ̃

ς
(
c
(jr)(ȷ̃)
t

) ς−1
ς

= 1.

I derive the optimality condition between consumption c(jr)(ȷ̃)t and c(jr)(ȷ̃)t ,

c
(jr)(ȷ̃)
t = c

(jr)(ȷ̂)
t

(
γ ȷ̃

γ ȷ̂

)(
pȷ̂rt

pȷ̃rt

)ς

(cjrt )ϑ
ȷ̂−ϑȷ̃

,

and use the utility function to derive the Hicksian demand,

c
(jr)(ȷ̃)
t = γ ȷ̃

(
pȷ̃rt

Ejr
t

)−ς

(cjrt )ϑ
ȷ̃

,

Ejr
t =

 J∑
j=1

γ ȷ̃
(
cjrt

)ϑȷ̃ (
pȷ̃rt

)1−ς

 1
1−ς

.

Then, I employ the definition of the minimum cost expenditure,

wjr
t =

J∑
ȷ̃.=1

pȷ̃.r
t c

(jr)(ȷ̃.)
t =

 J∑
ȷ̃.=1

γ ȷ̃.
(
cjrt

)ϑȷ̃. (
pȷ̃.r
t

)1−ς

 1
1−ς

,

to rewrite consumption, c(jr)(ȷ̃.)
t , and consumption shares, s(jr)(ȷ̃.)

t .

c
(jr)(ȷ̃.)
t = γ ȷ̃.

(
pȷ̃.r
t

wjr
t

)−ς (
cjrt

)ϑȷ̃.

,

s
(jr)(ȷ̃.)
t =

pȷ̃.r
t c

(jr)(ȷ̃.)
t

wjr
t

= γ ȷ̃.

(
pȷ̃.r
t

wjr
t

)1−ς (
cjrt

)ϑȷ̃.

.

Worker’s Migration Decision Workers face a forward-looking decision regarding where to reside and
work in the next period, as defined in equation (3). I take the expectation over the preference shock,

Evjrt = log(Bjr
t c

jr
t ) + βEvjrt+1 +Emax

j′r′

{
ϵj

′r′

t + ϵ̄
(jr)(j′r′)
t

}
,
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ϵ̄
(jr)(j′r′)
t = β(Evj

′r′

t+1 −Ev
jr
t+1)− χ(jr)(j′r′),

and define ϵ̄(jr)(j
′r′)

t as a non-stochastic and non-idiosyncratic variable summarizing the net benefit of mov-
ing from market jr to j′r′, that is, the increase in discounted welfare minus the mobility cost.

Under the assumption that the idiosyncratic shock follows a Gumbel distribution with location param-
eter γ̄ and scale parameter γ̄ν, ϵj

′r′

t ∼ Gumbel(−γ̄ν, ν), where γ̄ is the Euler-Mascheroni constant and ν

governs the dispersion of the idiosyncratic shock, the expected value function can be rewritten as follows,

Evjrt = log(Bjr
t c

jr
t ) + ν

log

J∑
ȷ̃=1

R∑
r̃=1

exp
(
βEvȷ̃r̃t+1 − χ(jr)(ȷ̃r̃)

)1/ν .

The share of households moving from market jr to market j′r′ can be computed as follows,

µ
(jr)(j′r′)
t = P

(
j′r′ = argmax

ȷ̃′r̃′
{ϵj

′r′

t + ϵ̄
(jr)(ȷ̃′r̃′)
t }

)
.

Firm’s Problem The price of final good j in region r, pjrt , is a CES ideal price index of the price paid for
each variety. Varieties are purchased from the region with lower cost inclusive of freight,

pjrt =

(∫
p̃jrt (z)1−ξdF (z)

) 1
1−ξ

,

p̃jrt (z) = min
r̃

{
1

z
κjr̃
t κ

(jr̃)(jr)
t

(
Ajr̃

t Ωj(T r̃
t )
)−(1−ωjr)

}
.

Given the properties of the Fréchet distribution, with marginal distribution F (z) = exp(−z−θ), the
distribution of the final prices is given by,

P(p̃jrt (z) ≥ p) = P

(
min
r̃

{
1

z
κjr̃
t κ

(jr̃)(jr)
t

(
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t Ωj(T r̃
t )
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}
≥ p

)

= P
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{
1
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t κ

(jr̃)(jr)
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(
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t )
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}
≥ p ∀r̃

)

=

R∏
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P

({
1

p
κjr̃
t κ

(jr̃)(jr)
t

(
Ajr̃

t Ωj(T r̃
t )
)−(1−ωjr)

}
≥ z

)

=

R∏
r̃=1

exp

−

{
1

p
κjr̃
t κ

(jr̃)(jr)
t

(
Ajr̃

t Ωj(T r̃
t )
)−(1−ωjr)

}−θ
 .

Consequently, the price of final goods also follows a Fréchet distribution,

P(p̃jrt (z) ≤ p) = 1− e−Φjr
t pθ

,

Φjr
t =

R∑
r̃=1

(
κjr̃
t κ

(jr̃)(jr)
)−θ (

Ajr̃
t Ωj(T r̃

t )
)θ(1−ωjr̃)

,

pjrt = Γ

(
1 +

1− ξ

θ

) 1
1−ξ

(
R∑

r̃=1

(
κjr̃
t κ

(jr̃)(jr)
t

)−θ (
Ajr̃

t Ωj(T r̃
t )
)θ(1−ωjr̃)

)−1/θ

.
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The share of goods of sector j consumed in region r that were produced in region r̃ can be computed as
follows,

π
(jr̃)(jr)
t = P

(
r̃ = argmin

r̂

{
pjr̂t (z)κ(jr̂)(jr)

})
,

=

(
κjr̃
t κ

(jr̃)(jr)
t

)−θ (
Ajr̃

t Ωj(T r̃
t )
)θ(1−ωjr̃)

∑R
r̂=1

(
κjr̂
t κ

(jr̂)(jr)
t

)−θ (
Ajr̂

t Ωj(T r̂
t )
)θ(1−ωjr̂)

.

B.2 Time Differences

To ease the exposition, let ẋt+1 = xt+1/xt be the proportional change of variable x from period t to t + 1.
Given an allocation of wages, labor, trade shares, consumption shares, fossil fuel expenditure in total energy,
ϱt = {ϱjrt }J,Rj=1,r=1, and carbon stocks, (wt, Lt, πt, st, ϱt, S1,t, S2,t,Υt), and a change of the state variables
(L̇t+1, Ṡ1,t+1, Ṡ2,t+1, Υ̇t+1, Θ̇t+1), the time difference of wages, rents, energy price, input bundle price, final
good price and utility and the next period level of expenditure, trade shares and consumption shares,
(ẇt+1, q̇t+1, ṗ

e
t+1, κ̇t+1, ṗt+1, u̇t+1, Xt+1, πt+1, st+1), solves the following system of equations,

q̇rt+1 =

J∑
j=1

ϕjrt ẇ
jr
t+1L̇

jr
t+1, with ϕjrt :=

(
wjr

t L
jr
t∑J

ȷ̃=1

∑R
r̃=1 w

ȷ̃r̃
t L

ȷ̃r̃
t

)
, (B.1)

ṗe,jrt+1 =

(
ϱjrt

(
ṗf,jrt+1

)1−ζ

+ (1− ϱjrt )
(
ṗc,jrt+1

)1−ζ
)1/(1−ζ)

, with ϱjrt =
pf,jrt ef,jrt

pjrt e
jr
t

, (B.2)

κ̇jr
t+1 =

((
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)αL (
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)αH (
ṗe,jrt+1

)αE)(1−ωjr)/αW
 J∏
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(
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, (B.3)

ṗjrt+1 =

(
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, (B.4)
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, (B.5)

s
(jr)(ȷ̃)
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(jr)(ȷ̃)
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(
ṗȷ̃rt+1

ẇjr
t+1

)1−ς (
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)ϑȷ̃

, with
J∑

ȷ̃=1

s
(jr)(ȷ̃)
t+1 = 1, (B.6)

Xjr
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s
(ȷ̃r)(j)
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ȷ̃r
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) R∑
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π
(ȷ̃r)(ȷ̃r̃)
t+1 X ȷ̃r̃
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ẇjr
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)( R∑
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π
(jr)(jr̃)
t+1 Xjr̃
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t+1L̇
jr
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, (B.8)

ėf,jrt+1 =

(
ẇjr

t+1L̇
jr
t+1

ṗf,jrt+1

)(
ṗf,jrt+1

ṗe,jrt+1
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, (B.9)

ėc,jrt+1 =

(
ẇjr

t+1L̇
jr
t+1

ṗc,jrt+1

)(
ṗc,jrt+1

ṗe,jrt+1

)1−ζ

. (B.10)
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To ensure that the economic and climate variables converge to a steady state, I impose that the sequence
of changes in fundamentals converges to one in the long-run, limt→∞ Θ̇t+1 = 1, and require that the ex-
ogenous projections of carbon dioxide emissions and forcing of other greenhouse gases converge to zero
over time, limt→∞Ex

t+1 = limt→∞ F x
t+1 = 0. Given the structure of the energy and climate model, the

aforementioned assumptions imply that global and local levels of temperature reach a steady state over
time. Consequently, the damage function on productivity evaluated at local temperature, Ωj(T r

t+1), also
converges to a constant value over time and the exogenous and endogenous variation of productivities
converge to a constant value in the long-run.

Given data on wages, labor, trade shares, consumption shares, fossil fuel expenditure in total energy,
migration shares and carbon stocks in the initial period (w0, L0, π0, s0, ϱ0, µ−1, S1,0, S2,0,Υ0), and a con-
verging sequence of fundamental and exogenous climate variables {Θt+1, E

x
t+1, F

x
t+1}∞t=0, the sequence of

{µt+1, Lt+1, υt+1, S1,t+1, S2,t+1, Tt+1, T
r
t+1,Υt+1}∞t=0 solve the following system of equations,

µ
(jr)(j′r′)
t+1 =

µ
(jr)(j′r′)
t Ξ̇

(jr)(j′r′)
t

(
υ̇j
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)β
∑J

ȷ̃=1

∑R
r̃=1 µ

(jr)(ȷ̃r̃)
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)β , (B.11)

Lj′r′

t+1 =

J∑
j=1

R∑
r=1

Ljr
t µ

(jr)(j′r′)
t , (B.12)

υ̇jrt+1 =
(
Ḃjr

t+1u̇
jr
t+1

)1/ν  J∑
j′=1

R∑
r′=1

µ
(jr)(j′r′)
t Ξ̇

(jr)(j′r′)
t+1

(
υ̇j

′r′

t+2

)β , (B.13)

as well as equations (21), (22), (23), (25) and (26). Where the variables υt = {exp(V jr
t )1/ν}J,Rj=1,r=1 and

Ξt = {exp(χ(jr)(j′r′)
t )−1/ν}J,Rj=1,r=1 denote transformations of the value function and the migration costs,

respectively.

B.3 Migration Elasticity

In the subsequent derivations, I assume that the mobility costs are time-invariant, χ(jr)(j′r′)
t = χ(jr)(j′r′).

PPML regression stage The first stage is a fixed-effect estimation to compute the value function. I multi-
ply and divide the mass of workers migrating across market by exp(−βV jr

t+1)
1/ν , as shown below,

µ
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t Ljr
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(
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)
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Then, I gather terms and use the definition of the option value of migration to rewrite this equation as
follows,

µ
(jr)(j′r′)
t Ljr

t =
exp
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(
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t+1),
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where Dj′r′

t is a destination-time fixed effect, Ojr
t is an origin-time fixed effect and ξ(jr)(j

′r′)
t is the sampling

error. The terms Dj′r′

t and Ojr
t are not separately identified, so without loss of generality I set D11

t = 0.
Equation (32) is estimated by PPML.

Bellman regression stage The second stage formulates the Bellman equation as an estimating equation
using the destination- and origin-time fixed effects, Dj′r′

t and Ojr
t+1, of the previous step. To construct the

estimating equation, I manipulate the value function of period t+ 1 as follows,

β

ν
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The variable in the left-hand side is constructed with the results of the first stage and data on population
and the first term on the right-hand side is a time fixed effect and the second term is a market fixed effect
when assuming migration frictions do not vary over time.

B.4 Welfare

Workers’ Welfare The lifetime utility of a worker, V jr
0 , in sector j and region r is defined as follows,

V ′jr
0 = log

(
Bjr

0 c
′jr
0

)
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Thus, I define the equivalent variation for an average worker as the scalar Ejr
t that satisfies:

V ′jr
0 = V jr
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βt log
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Hence, the workers’ equivalent variation depends on the change in real consumption and the change
in the option value. When warming makes a market less suitable for residing and producing, the share of
households that decide to stay in this region is expected to decrease. Hence, migration acts as a mitigation
mechanism against global warming, attenuating the welfare losses.

For simplicity in the exposition, define the hat notation, x̂t+1 = ẋ′t+1/ẋt+1, as the ratio of the counterfac-
tual and factual time differences. The change in real consumption can be derived by manipulating equation
(B.6),

(
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ẇjr
t+1

)1−ς

s
′(jr)(ȷ̃)
t

(
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)ϑȷ̃

.

Therefore, in this model, the change in real consumption does not only depend on the variations on
wages and prices, but also on the variations of consumption shares. When warming rises the consumption
share of the most affected goods (e.g., agriculture), real consumption further declines. Hence, non homoth-
eticities act as a magnification mechanism, aggravating welfare losses.64 Finally, as in Caliendo et al. (2017),
the change in the price of goods depends on the change in trade openness, factor costs and fundamental

64Observe that in the particular case in which preferences replicate a Cobb Douglas structure with ϑȷ̃ = 1 − ς and ς → 1, the

change in real consumption is given by ûjrt+1 = ŵjr
t+1/

∏J
ȷ̃=1

(
p̂ȷ̃rt+1

)s
(jr)(ȷ̃)
t+1 , where s(jr)(ȷ̃)t+1 is a time-invariant constant.

75



productivity,

p̂ȷ̃rt+1 =
(
π̂
(ȷ̃r)(ȷ̃r)
t+1

)1/θ ( κ̂ȷ̃r
t+1

Ω̂ȷ̃
(
T r
t+1

)) .
The change in prices can be decomposed in three terms. First, the direct change in fundamental pro-

ductivity, which captures the sign and size of the warming impact. Second, change in the trade share with
itself, which evaluates the change in trade openness, that gives households access to cheaper imported
goods. When warming makes a particular region relatively less productive, it is expected to purchase less
varieties from itself and more from other trade partners, decreasing the trade share with itself and atten-
uating welfare losses. Finally, change in factor prices, which captures the effect of local factors and input
output linkages. When warming rises the prices of the most affected products, other products will experi-
ence augments in prices depending on the particular composition of the input output linkages.

Figures 19-24 zoom in the spatial pattern and distribution function of welfare losses in United States,
Canada, China, India, Russia and Brazil.

Figure 19: Average workers’ welfare losses due to global warming in United States.

Figure 20: Average workers’ welfare losses due to global warming in Canada.

76



Figure 21: Average workers’ welfare losses due to global warming in China.

Figure 22: Average workers’ welfare losses due to global warming in India.

Figure 23: Average workers’ welfare losses due to global warming in Russia.

Average Workers’ Welfare The lifetime utility of an average worker, V r
0 , in region r is defined as the

weighted average of lifetime utilities across working sectors, where weights are the employment shares,

V r
0 =

J∑
j=1

(
Ljr
0

Lr
0

)
V jr
0 .

77



Figure 24: Average workers’ welfare losses due to global warming in Brazil.

Thus, I define the equivalent variation for an average worker as the scalar Er that satisfies:

V ′r
0 = V r

0 +

∞∑
t=0

βt log (Er) ,

log (Er) = (1− β) (V ′r
0 − V r

0 ) = (1− β)

J∑
j=1

(
Ljr
0

Lr
0

)(
V ′jr
0 − V jr

0

)
=

J∑
j=1

(
Ljr
0

Lr
0

)
log
(
Ejr
)

Landlords’ Welfare The lifetime utility of a landlord, W r
0 , in region r is defined as the present discounted

value of real consumption, where income comes from the land rents and the consumption share are given
by the workers’ decisions,

W r
0 =

∞∑
t=0

βt log

(
qrtH

r

P r
t

)
, P r

t =

J∏
ȷ̃=1

(
pȷ̃rt

)sȷ̃rt
.

Thus, I define the equivalent variation for a landlord as the scalar Rr that satisfies:

W ′r
0 =W r

0 +

∞∑
t=0

βt log (Rr) ,

log (Rr) = (1− β)

∞∑
t=0

βt log

(
q′rt /q

r
t

P ′r
t /P

r
t

)
=

∞∑
t=1

βt log

(
q̂rt

P̂ r
t

)
.

Figure 25 plots the spatial pattern and distribution function of welfare losses for landlords.

B.5 Migration Flows

To construct migration flows across more than 1,700 markets, where a market is identified as a sector-region
combination, I extend the procedure outlined in Azose and Raftery (2019) as follows. To ease the exposition,
define M br

t as the number of persons born in region b and residing in r in period t.
First, I control for births and deaths to guarantee that changes in the migration stocks reflect movements

across regions, rather than natural population changes. Data on births and deaths at the country- and
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Figure 25: Average workers’ and landlords’ welfare losses due to global warming.

subnational-level is described in Appendix A.5.
The number of deaths in the time interval t to t + 1 is subtracted from the stock data at time t. Since I

only observe deaths by place of residence, drt,t+1, and not its decomposition by place of residence and place
of birth, I proportionally allocate the number of deaths to each population stock.

The number of births in the time interval t to t+ 1 is subtracted from the stock data at time t+ 1. Since
I only observe births by place of residence, brt,t+1, I assume that there is no migration of newborns, in other
words, births are assumed to only affect the native born stock. Define the migration stocks that account for
natural demographic changes with a prime,

M
′br
t =M br

t − drt,t+1(M
br
t /M+r

t ),

M
′br
t+1 =M br

t+1 − brt,t+11{b = r}.

After controlling for natural population changes, any difference in the number of persons born in a
particular region in the time interval t to t+1 must reflect the migrant transitions to or from outside external
regions.65 When the difference between period t + 1 minus t is greater than zero, M ′

t+1
b+ − M ′

t
b+ > 0,

migrants have arrived from external regions. Conversely, a negative difference implies that migrants have
moved away to external regions. Define the migration stocks that account for external migration with a
double prime,

M
′′br
t =M

′br
t −

R∑
b=1

Wbr
t · |M

′b+
t+1 −M

′b+
t | · 1{M

′b+
t+1 −M

′b+
t < 0}, (B.14)

M
′′br
t+1 =M

′br
t+1 −

R∑
b=1

Wbr
t+1 · |M

′b+
t+1 −M

′b+
t | · 1{M

′b+
t+1 −M

′b+
t > 0}, (B.15)

1 =

R∑
r=1

Wbr
t =

R∑
r=1

Wbr
t+1 (B.16)

and denote by Wbr
t ,Wbr

t+1 the breakdown variables that allocate population across regions. I improve the

65Due to lack of information, the spatial coverage excludes a few countries of the world.
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Figure 26: Comparison of net migration rates in the data and the estimation.

estimation of the breakdown parameters relative to Abel (2013) to target the net migration rates observed
in the data between periods t and t+1, Nr

t,t+1. The model induced net migration rate in region r is defined
as the difference between M

′′+r
t+1 and M

′′+r
t relative to the average population over that period, (M

′′+r
t +

M
′′+r
t+1 )/2,

min
W

R∑
r=1

(
2
M

′′+r
t+1 −M

′′+r
t

M
′′+r
t+1 +M

′′+r
t

−Nr
t,t+1

)2

st (B.14), (B.15) and (B.16)

Wbr
t ,Wbr

t+1 ∈ [0, 1].

Figure B.5 compares of net migration rates in the data and the estimation. After such adjustment, the
changes in the migration stocks over two periods entirely reflect the movement of households across the
regions of interest. To decompose migration stocks across working sectors, I assume that for each region of
residence the share of households working in a particular sector does not depend on the birthplace,

M
(jr)(b)
t = (Ljr

t /L
+r
t )M

′′rb
t .

Consequently, for each place of birth, I know the number of workers in each market jr from period t

to period t + 1. The next step is to estimate, for each place of birth, the mass of workers moving across
markets.

Poisson regression models have been extensively used to represent migration models. I consider that
the number of workers born in bmoving from market jr to j′r′ follows a Poisson process with mean defined
as follows,

m
(jr)(j′r′)(b)
t = β

(jr)
1,t · β(j′r′)

2,t · β(r)(b)
3,t · β(r′)(b)

4,t · δ(r)(r
′)(b)

1,t · δ(jr)(j
′r′)

2,t ·ϖ(jr)(j′r′)(b)
t . (B.17)

The coefficients β(jr)
1,t and β

(j′r′)
2,t account for the background characteristics of the market of origin and

destination, respectively. The coefficients β(r)(b)
3,t and β(r′)(b)

4,t account for the birthplace specific background
characteristics of the region of origin and destination, respectively.
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To allow for structural differences between migrants and stayers, equation (B.17) incorporates the di-
chotomic variables δ(r)(r

′)(b)
1,t = exp(δ

(r)(r)(b)
1,t · 1{r = r′}) and δ

(jr)(j′r′)
2,t = exp(δ

(jr)(jr)
2,t · 1{jr = j′r′}). The

term ϖ
(jr)(j′r′)(b)
t represents an auxiliary information on migration flows, usually an inverse function of

distance.66

The maximum log-likelihood estimates of the aforementioned parameters can be derived by considering
the probability of observing n(jr)(j

′r′)(b)
t , provided that migrant transitions are independent,

max
β,δ

J∑
j=1

J∑
j′=1

R∑
r=1

R∑
r′=1

R∑
b=1

(
n
(jr)(j′r′)(b)
t log

(
m

(jr)(j′r′)(b)
t

)
−m

(jr)(j′r′)(b)
t − log

(
n
(jr)(j′r′)(b)
t !

))
st (B.17).

I rearrange terms to arrive at the following problem, where the notation + symbolizes the sum over the
index of interest,

max
β,δ

J∑
j=1

R∑
r=1

n
(jr)(++)(+)
t log

(
β
(jr)
1,t

)
+

J∑
j′=1

R∑
r′=1

n
(++)(j′r′)(+)
t log

(
β
(j′r′)
2,t

)

+

R∑
r=1

R∑
b=1

n
(+r)(++)(b)
t log

(
β
(r)(b)
3,t

)
+

R∑
r′=1

R∑
b=1

n
(++)(+r′)(b)
t log

(
β
(r′)(b)
4,t

)
+

R∑
r=1

R∑
r′=1

R∑
b=1

n
(+r)(+r′)(b)
t log

(
δ
(r)(r′)(b)
1,t

)
+

J∑
j=1

J∑
j′=1

R∑
r=1

R∑
r′=1

n
(jr)(j′r′)(+)
t log

(
δ
(jr)(j′r′)
2,t

)
.

The First Order Conditions of the Maximum Likelihood estimation are listed below. Since there is no
closed-form solution for the parameters of interest, I iterate over the optimality until convergence,

β
(jr)
1,t : m

(jr)(j′r′)(b)
t =

(
n
(jr)(++)(+)
t

m
(jr)(++)(+)
t

)
m

(jr)(j′r′)(b)
t ,

β
(j′r′)
2,t : m

(jr)(j′r′)(b)
t =

(
n
(++)(j′r′)(+)
t

m
(++)(j′r′)(+)
t

)
m

(jr)(j′r′)(b)
t ,

β
(r)(b)
3,t : m

(jr)(j′r′)(b)
t =

(
n
(+r)(++)(b)
t

m
(+r)(++)(b)
t

)
m

(jr)(j′r′)(b)
t ,

β
(r′)(b)
4,t : m

(jr)(j′r′)(b)
t =

(
n
(++)(+r′)(b)
t

m
(++)(+r′)(b)
t

)
m

(jr)(j′r′)(b)
t ,

δ
(r)(r′)(b)
1,t : m

(jr)(j′r′)(b)
t =

(
n
(+r)(+r′)(b)
t

m
(+r)(+r′)(b)
t

)
m

(jr)(j′r′)(b)
t if r = r′,

δ
(jr)(j′r′)
2,t : m

(jr)(j′r′)(b)
t =

(
n
(jr)(j′r′)(+)
t

m
(jr)(j′r′)(+)
t

)
m

(jr)(j′r′)(b)
t if (jr) = (j′r′).

The structural parametrization of the Poisson process is designed so that the estimation only requires
information on the marginal totals, which are observable, and an assumption on the number of stayers.
Following Abel and Sander (2014), I set the diagonal values to their highest possible value, which is the

66Since the results are largely stable across different specifications of this variable, I set it equal to one.
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minimum number of workers across two periods of time,

n
(+r)(+r)(b)
t = min

{
M

(+r)(b)
t ,M

(+r)(b)
t+1

}
,

n
(jr)(jr)(+)
t = min

{
M

(jr)(+)
t ,M

(jr)(+)
t+1

}
.

As the diagonal values represent the maximum number of stayers in each market, the estimated off-
diagonal elements are the minimum migration flows required to match the changes in migration stocks.
Azose and Raftery (2019) relax the assumption on minimal migration and repeat the estimation the estima-
tion by ignoring the differences between migrants and stayers, that is, omitting the coefficients in equation
(B.17). Finally, the migration flows are a weighted average of the estimates of minimum migration flows
and those under the independence model, where the weight to the former estimates equals 0.87.67 The
resulting migration flows are displayed in Figures 27-35.

Figure 27: Migration shares across states in the United States in the period 2011-2015.

Figure 28: Migration shares across states in the United States in the period 2011-2015.

67Azose and Raftery (2019) find that this weight better replicates the migration flows constructed by the Integrated Modeling of
European Migration (Raymer et al., 2013).
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Figure 29: Migration shares across states in China in the period 2011-2015.

Figure 30: Migration shares across states in China in the period 2011-2015.

Figure 31: Migration shares across states in India in the period 2011-2015.
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Figure 32: Migration shares across states in India in the period 2011-2015.

Figure 33: Migration shares across states in Brazil in the period 2011-2015.

Figure 34: Migration shares across states in Brazil in the period 2011-2015.

B.6 Algorithm

Below I outline the algorithm to numerically implement the solution of the competitive equilibrium in
time differences, conditional on an initial observable allocation (w0, L0, E

f
0 , E

c
0, π0, µ−1, S1,0, S2,0,Υ0) and
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Figure 35: Migration shares across states in Canada and Russia in the period 2011-2015.

an environmental converging sequence for the exogenous fundamentals {Θ̇t+1}Tt=0.

(i) Guess a convergent path for the time differences of the value function transformation {υ̇(0)t+1}Tt=0.

(ii) Guess a convergent path for the global evolution of carbon dioxide emissions {Ef,(0)
t+1 }Tt=0 and compute

the path for local temperature {T r,(0)
t+1 }Tt=0 and the evolution of productivity {Ω̇j(T

r,(0)
t+1 )}Tt=0.

(iii) For every period t ≥ 0, use µ−1 and {υ̇(0)t }Tt=0 to compute the migration shares {µt}Tt=0,

µ
(jr)(j′r′)
t =

µ
(jr)(j′r′)
t−1 Ξ̇

(jr)(j′r′)
t

(
υ̇
j′r′,(0)
t+1

)β
∑J

ȷ̃=1

∑R
r̃=1 µ

(jr)(ȷ̃r̃)
t−1 Ξ̇

(jr)(ȷ̃r̃)
t

(
υ̇
ȷ̃r̃,(0)
t+1

)β ,

where Ξ
(jr)(j′r′)
t = exp

(
χ
(jr)(j′r′)
t

)−1/ν

.

(iv) For every period t ≥ 0, use Ljr
0 and {µt}Tt=0 to solve for {Lt+1}Tt=0,

Lj′r′

t+1 =

J∑
j=1

R∑
r=1

Ljr
t µ

(jr)(j′r′)
t .

(v) For every period t ≥ 0, solve the temporary equilibrium.

(a) Guess the global level of carbon dioxide emissions, Ef,(1)
t+1 and compute the time difference of the

extraction cost, ḣ(Υ̇t+1), and the time difference of the energy price, ṗe,jrt+1 .

(b) Given L̇jr
t+1, guess a value for the wages in time difference ẇjr,(0)

t+1 .

(c) Compute the time difference of land rents and energy price,

q̇rt+1 =

J∑
j=1

ϕjrt ẇ
jr,(0)
t+1 L̇jr

t+1, ϕjrt =
wjr

t L
jr
t∑J

ȷ̃=1 w
ȷ̃r
t L

ȷ̃r
t

,

ṗe,jrt+1 =

(
ϱjrt

(
ṗf,jrt+1

)1−ζ

+ (1− ϱjrt )
(
ṗc,jrt+1

)1−ζ
)1/(1−ζ)

, ϱjrt =
pf,jrt ef,jrt

pjrt e
jr
t

.
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(d) Solve for the time difference of input cost and the final good price,

κ̇jr
t+1 =

((
ẇjr

t+1

)αL (
q̇rt+1

)αH (
ṗe,jrt+1

)αE)(1−ωjr)/αW
 J∏

ȷ̃=1

(
ṗȷ̃rt+1

)ω(ȷ̃r)(jr)

ωjr/αW

,

ṗjrt+1 =

(
R∑

r̃=1

π
(jr̃)(jr)
t

(
κ̇jr̃
t+1κ̇

(jr̃)(jr)
t+1

)−θ (
Ȧjr̃

t+1Ω̇
j
(
T r̃
t+1

))θ(1−ωjr̃)
)−1/θ

.

(e) Calculate trade shares,

π
(jr̃)(jr)
t+1 = π

(jr̃)(jr)
t

(
κ̇jr̃
t+1κ̇

(jr̃)(jr)
t+1

)−θ (
Ȧjr̃

t+1Ω̇
j
(
T r̃
t+1

))θ(1−ωjr̃) (
ṗjrt+1

)−θ

.

(f) Solve for the time difference of utility,

u̇jrt+1 =

(
ẇ

jr,(0)
t+1

)1−ς

∑J
ȷ̃=1 s

(ȷ̃r)(j)
t

(
ṗȷ̃rt+1

)1−ς (
u̇jrt+1

)ϑȷ̃−1 .

(g) Retrieve consumption shares,

s
(ȷ̃r)(j)
t+1 = s

(ȷ̃r)(j)
t

(
ṗȷ̃rt+1

ẇ
ȷ̃r,(0)
t+1

)1−ς (
u̇jrt+1

)ϑȷ̃

.

(h) Solve for expenditures,

Xjr
t+1 =

J∑
ȷ̃=1

s
(ȷ̃r)(j)
t+1 ẇ

ȷ̃r,(0)
t+1 wȷ̃r

t L̇
ȷ̃r
t+1L

ȷ̃r
t + s

(jr)
t+1

J∑
ȷ̃=1

(αH/αL)ẇ
ȷ̃r,(0)
t+1 wȷ̃r

t L̇
ȷ̃r
t+1L

ȷ̃r
t

+

J∑
ȷ̃=1

ω(jr)(ȷ̃r)

1− αE(1− ωȷ̃r)

R∑
r̃=1

π
(ȷ̃r)(ȷ̃r̃)
t+1 X ȷ̃r̃

t+1.

(i) Retrieve the time difference of wages,

ẇ
jr,(1)
t+1 wjr

t+1L̇
jr
t+1L

jr
t =

(
αL/αW

) (
1− ωjr

)( R∑
r̃=1

π
(jr)(jr̃)
t+1 Xjr̃

t+1

)
.

If the difference between the guess and the solution of the time difference of wages is lower than a
certain tolerance, go to the next step. Otherwise, return to step (vb) and iterate until convergence.

(j) Retrieve the time difference of use of fossil fuels and clean energy,

ṗf,jrt+1 ė
f,jr,(1)
t+1 = ẇ

jr,(1)
t+1 L̇jr

t+1

(
ṗf,jrt+1

ṗe,jrt+1

)1−ζ

, ṗc,jrt+1 ė
c,jr,(1)
t+1 = ẇ

jr,(1)
t+1 L̇jr

t+1

(
ṗc,jrt+1

ṗe,jrt+1

)1−ζ

,

E
f,(1)
t+1 =

J∑
j=1

R∑
r=1

ė
f,jr,(1)
t+1 ėf,jrt .
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If the difference between the guess and the solution of the carbon dioxide emissions is lower
than a certain tolerance, go to the next step. Otherwise, return to step (va) and iterate until
convergence.

(vi) If the difference between {Ef,(0)
t+1 }Tt=0 and {Ef,(1)

t+1 }Tt=0 is lower than a certain tolerance, go to the next
step. Otherwise, return to step (ii), update the evolution of productivity, {Ω̇j(T

r,(1)
t+1 )}Tt=0, and iterate

until convergence.

(vii) For every period t ≥ 0, use the solution of the temporary equilibrium to solve backwards for {υ(1)t }Tt=0,

υ̇
jr,(1)
t =

(
Ḃjr

t u̇
jr
t

)1/ν  J∑
j′=1

R∑
r′=1

µ
(jr)(j′r′)
t−1

(
υ̇
j′r′,(0)
t+1

)β .

If the difference between {υ̇(0)t+1}Tt=0 and {υ̇(1)t+1}Tt=0 is lower than a certain tolerance, the algorithm
concludes. Otherwise, return to step (i).
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